Genetic Resources for Climate Adaptation and Mitigation

7 Things to Consider

Re-validation of the need and value of germplasm collections

Heat, yes. But not only.

Article | Published: 05 October 2020

Intraspecific diversity as a reservoir for heat-stress tolerance in sweet potato

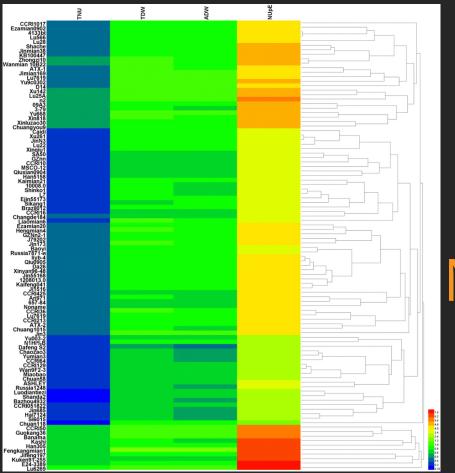
Bettina Heider \square , Quentin Struelens, Émile Faye, Carlos Flores, José E. Palacios, Raul Eyzaguirre, Stef de Haan & Olivier Dangles \square

Nature Climate Change 11, 64–69 (2021) | Cite this article

1003 Accesses | 3 Citations | 119 Altmetric | Metrics

https://www.nature.com/articles/s41558-020-00924-4

Published: 24 January 2020


Adaptation of common bean lines to high temperature conditions: genotypic differences in phenological and agronomic performance

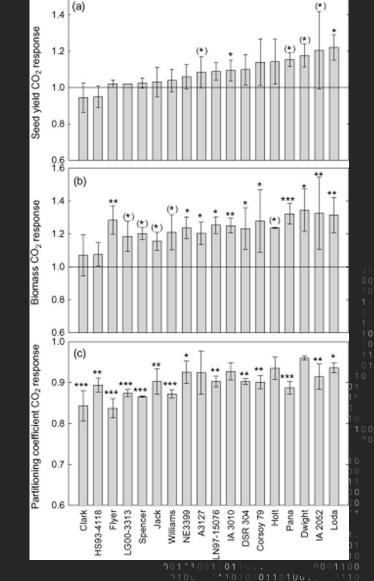
Juan Carlos Suárez [™], José A. Polanía, Amara T. Contreras, Leonardo Rodríguez, Leidy Machado, Claudia Ordoñez, Steve Beebe & Idupulapati M. Rao

Euphytica 216, Article number: 28 (2020) Cite this article

368 Accesses | 2 Citations | 5 Altmetric | Metrics

https://link.springer.com/article/10.1007/s10681-020-2565-

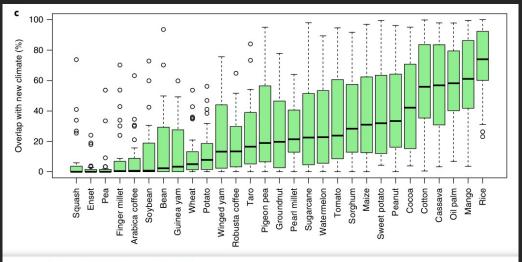
New traits for screening



Identification and screening of nitrogen-efficient cotton genotypes under low and normal nitrogen environments at the seedling stage

Hengheng ZHANG, Xiaoqiong FU, Xiangru WANG, Huiping GUI, Qiang DONG, Nianchang PANG, Zhun WANG, Xiling ZHANG ≅ & Meizhen SONG ≅

Journal of Cotton Research 1, Article number: 6 (2018) | Cite this article


2707 Accesses | 9 Citations | Metrics

Is there potential to adapt soybean (Glycine max Merry) to future [CO2]? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment

Plant, Cell & Environment, Volume: 38, Issue: 9, Pages: 1765-1774, First published: 38, Issue: 9, Pages: 1765-1774, First published: 31, September 2014, DOI: (10.1111/pce.12443)

Novel climates, novel environments, novel cultures

Letter | Published: 25 September 2019

Potential adaptive strategies for 29 sub-Saharan crops under future climate change

Samuel Pironon ☑, Thomas R. Etherington, James S. Borrell, Nicola Kühn, Marc Macias-Fauria, Ian Ondo, Carolina Tovar, Paul Wilkin & Katherine J. Willis

Nature Climate Change 9, 758-763 (2019) | Cite this article

2250 Accesses | 20 Citations | 72 Altmetric | Metrics

116 10101000. 2101

Genetic resources for multi-climate trait, multi-trait breeding

Towards greater precision

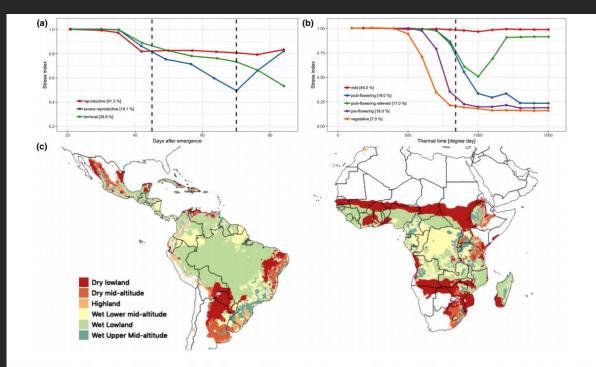


FIGURE 2 Three major CGIAR examples of environmental characterization to support breeding. (a) Drought stress patterns for rice in central Brazil (Ramirez-Villegas et al., 2018); (b) drought stress patterns for post-rainy sorghum in India (Kholová et al., 2013); and (c) map of maize breeding mega-environments from CIMMYT (Cairns et al., 2013). Panels A and B are redrawn from the original studies, and data from C was provided by CIMMYT

CGIAR modeling approaches for resource-constrained scenarios:

I. Accelerating crop breeding for a changing climate

Julian Ramirez-Villegas^{1,2*} Anabel Molero Milan^{3*} | Nickolai Alexandrov⁴ |

Senthold Asseng⁵ | Andrew J. Challinor⁶ | Jose Crossa³ | Fred van Eeuwijk⁷ |

Michel Edmond Ghanem^{8,9} | Cecile Grenier^{1,10} | Alexandre B. Heinemann¹¹ |

Jiankang Wang¹² | Philomin Juliana³ | Zakaria Kehel⁸ | Jana Kholova¹³ |

Jawoo Koo¹⁴ | Diego Pequeno³ | Roberto Quiroz^{15,16} | Maria C. Rebolledo^{1,10} |

Sivakumar Sukumaran³ | Vincent Vadez¹³ | Jeffrey W. White¹⁷ | Matthew Reynolds³

Threats to biodiversity + GR from climate change

Published: 12 May 2013

Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss

R. Warren , J. VanDerWal, J. Price, J. A. Welbergen, I. Atkinson, J. Ramirez-Villegas, T. J. Osborn, A. Jarvis, L. P. Shoo, S. E. Williams & J. Lowe

Nature Climate Change 3, 678–682 (2013) | Cite this article

9430 Accesses | 187 Citations | 254 Altmetric | Metrics

<u> https://www.nature.com/articles/nclimate1887</u>

Thank you!