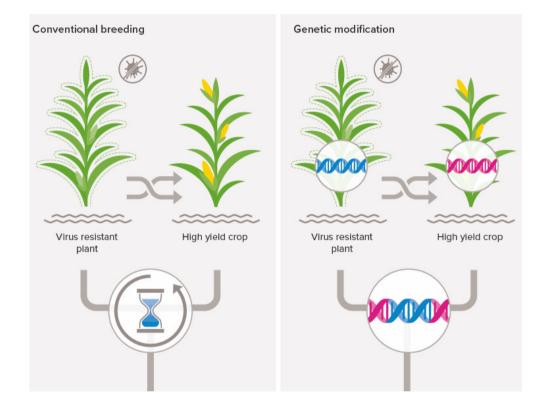
THE SAINSBURY LABORATORY

CRISPR Crops— Plant Genome Editing Made Easy

Today's outline

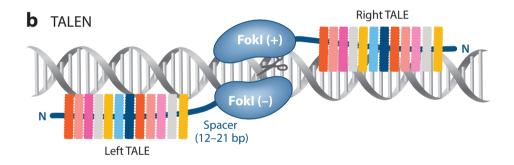

- ➡ What is CRISPR?
- Applications of CRISPR gene editing
- CRISPR and conservation biology

An Epic Treasure Hunt Turns Deadly P. 92 Do the Politics of Silicon /alley Make Any Sense? P.64 Al Bug Collectors

Genetic improvement of plants

- Hybridization
- Introgression
- Mutagenesis
- Transgenics

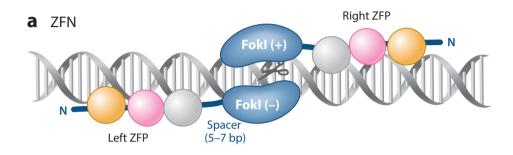

Gene editing – the ultimate in precision is to replace one of a few letters in the genome


Reverse genetics in plants circa ~2012

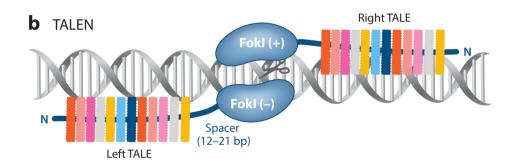
- Genome sequencing of mutagenized plants
- ➡ TILLING targeted sequencing of mutant plants
- **T-DNA or transposon mutagenesis**
- Gene knock-down using RNAi (VIGS, artificial miRNA, hairpin constructs)
- Site-specific nucleases (e.g. ZFNs and TALENs) for gene editing

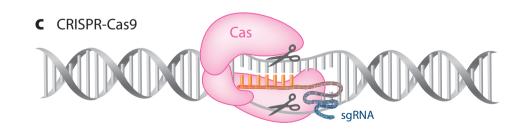
Sequence-specific nucleases (SSNs)

• Zinc-Finger Nucleases



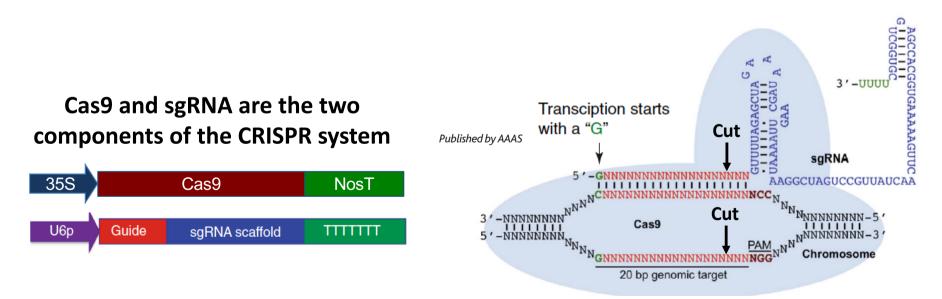
• TAL-Effector Nucleases


Langner et al. 2018


Sequence-specific nucleases (SSNs)

• Zinc-Finger Nucleases

• TAL-Effector Nucleases


• CRISPR/Cas9

Langner et al. 2018

The CRISPR Craze

A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity

Martin Jinek,^{1,2}* Krzysztof Chylinski,^{3,4}* Ines Fonfara,⁴ Michael Hauer,²† Jennifer A. Doudna,^{1,2,5,6}‡ Emmanuelle Charpentier⁴‡

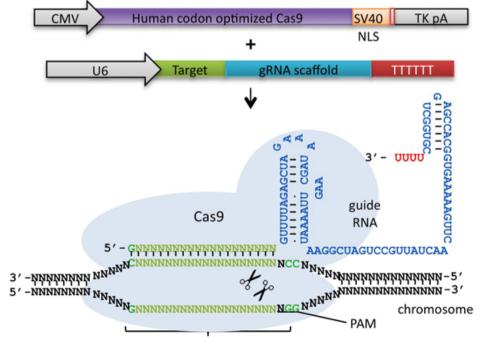
Opinion

This Year's Nobel Prize in Chemistry Honors a Revolution

With Crispr, two scientists turned a curiosity of nature into an invention that will transform the human race.

Report

m'

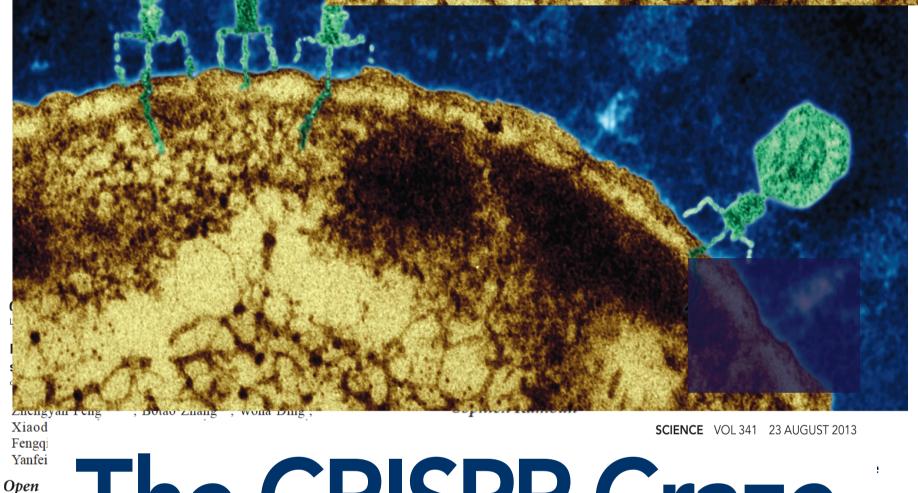

03 January 2013

RNA-Guided Human Genome RNA-Guided Human Genome Engineering via Cas9 Engineering via Cas9

Prashant Mali,^{1,5} Luhan Yang,^{1,3,5} Kevin M. Esvelt,² John Aach,¹ Marc Guell,¹ James E. DiCarlo,⁴ Julie E. Norville,¹ George M. Church^{1,2*}

Multiplex Genome Engineering Using CRISPR/Cas Systems

Le Cong,^{1,2*} F. Ann Ran,^{1,4*} David Cox,^{1,3} Shuailiang Lin,^{1,5} Robert Barretto,⁶ Naomi Habib,¹ Patrick D. Hsu,^{1,4} Xuebing Wu,⁷ Wenyan Jiang,⁸ Luciano Marraffini,⁸ Feng Zhang¹†



indels in human EMX1 locus

				PAM	
WT	5'-	GGAGGAAGGGCCTGAGTCCGAGCAGAAG-	AAGAA	GGGCTC	-3'

** 1	
D1	GGAGGAAGGGCCTGAGTCCGAGCAGAAGAGAAGGGCTC
+1	GGAGGAAGGGCCTGAGTCCGAGCAGAAGAAGAAGGGCTC
D2	GGAGGAAGGGCCTGAGTCCGAGCAGAAGGAAGGGCTC
D3	GGAGGAAGGGCCTGAGTCCGAGCAGAAGAAGGGCTC
D6	GGAGGAAGGGCCTGAGTCCGAGCAGAAGGGCTC
1, D6	GGAGGAAGGGCCTGAGCCCGAGCAGAAGGGCTC

23bp genomic target sequence

Target

LETTER TO

Jin Mi Qingp Jianm

The CRISPR Craze infects plant scientists

is System

013

Nucleic Acids Research, 2013, 1–12 doi:10.1093/nar/gkt780

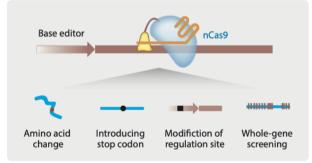
Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice

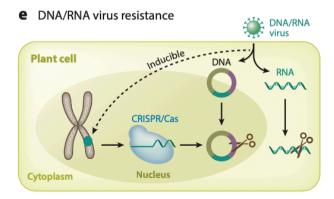
Wenzhi Jiang¹, Huanbin Zhou², Honghao Bi², Michael Fromm³, Bing Yang² and Donald P. Weeks^{1,*}

Kabin Xie and Yinong Yang*

G3: GeneslGenomeslGenetics Early Online, published on October 11, 2013 RNA guided genome editing for target gene mutations in wheat

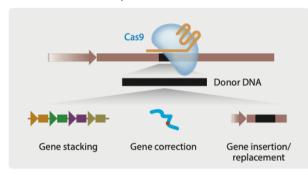
Santosh Kumar Upadhyay, Jitesh Kumar, Anshu Alok, RakeshTuli

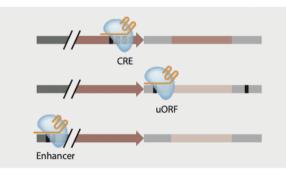

Annual Review of Plant Biology


CRISPR/Cas Genome Editing Wa and Precision Plant Breeding in Agriculture

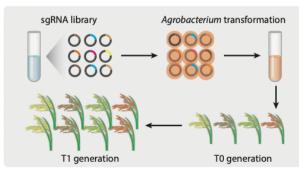
```
Kunling Chen,<sup>1,*</sup> Yanpeng Wang,<sup>1,*</sup> Rui Zhang,<sup>1</sup>
Huawei Zhang,<sup>1</sup> and Caixia Gao<sup>1,2</sup>
```

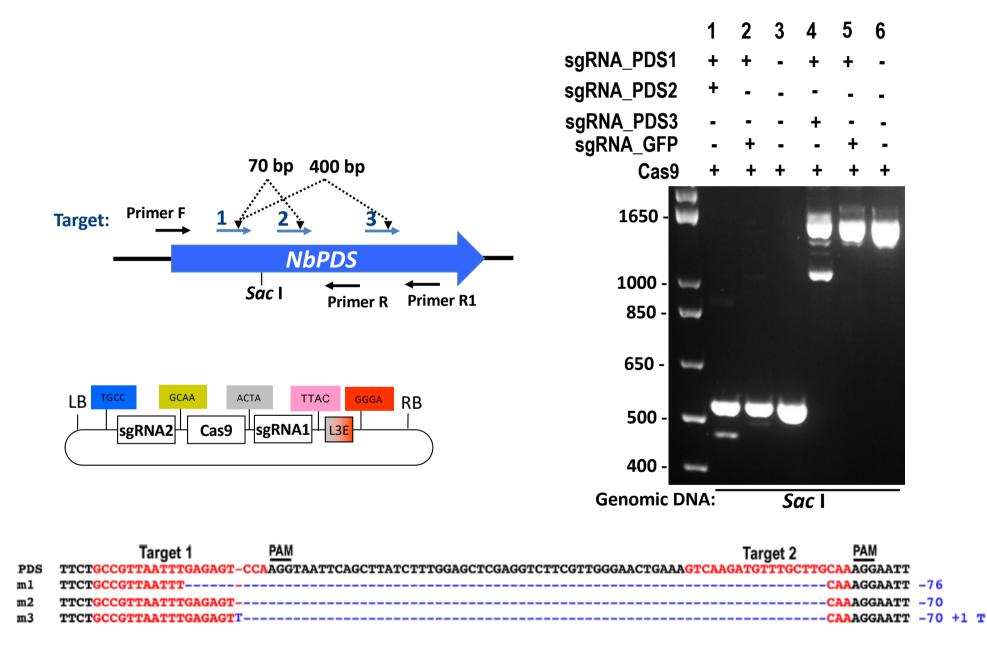
Cas9 Cas9 Indels Gene deletion Multiplex gene knockout

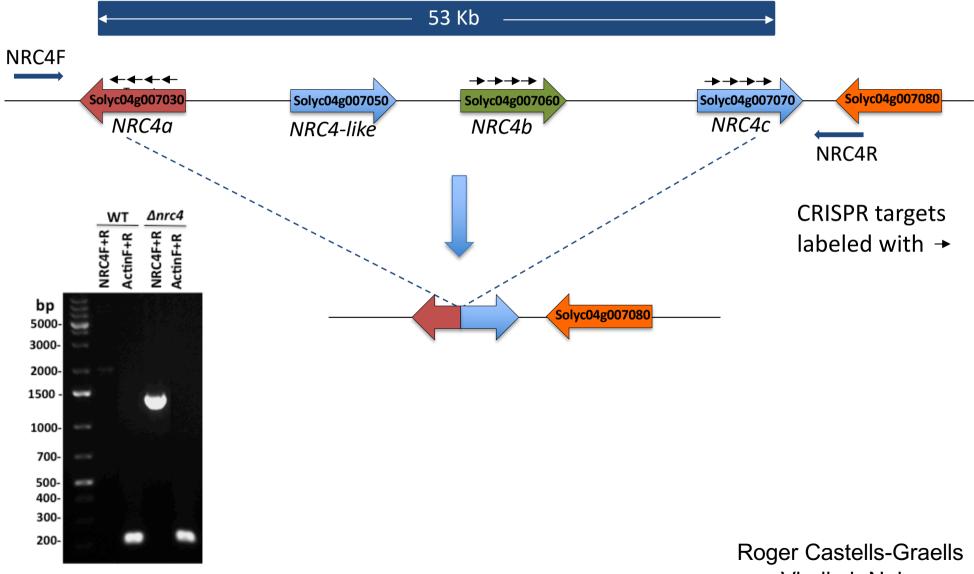

C Applications of base editing



b Gene knock-in/replacement

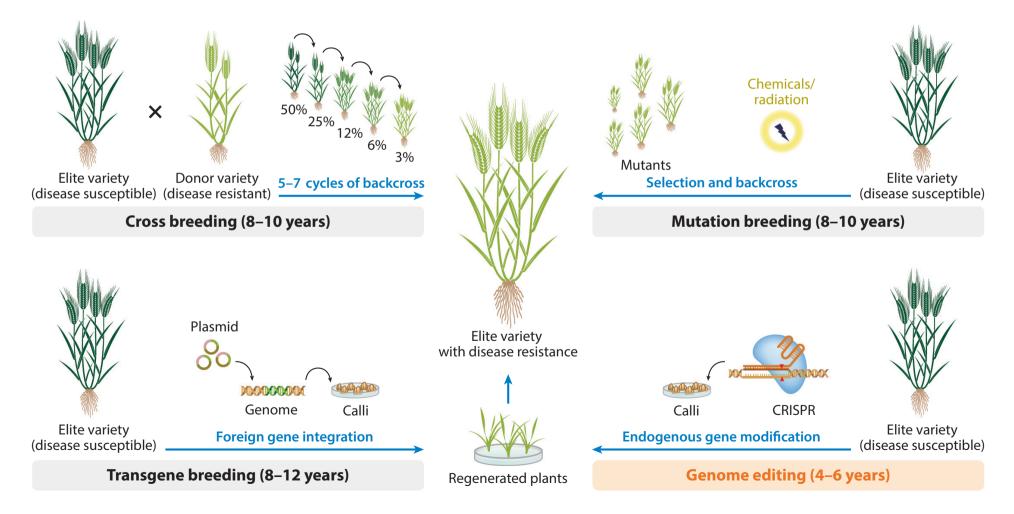

What can be done with CRISPR?


d Fine-tuning gene regulation


f High-throughput mutant library

CRISPR/Cas9 enables making small deletions...

...and BIG deletions



Vladimir Nekrasov

Annual Review of Plant Biology

CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture

Kunling Chen,^{1,*} Yanpeng Wang,^{1,*} Rui Zhang,¹ Huawei Zhang,¹ and Caixia Gao^{1,2}

Home About Biofortified Blog

Crop plants with DNA deletions are not GMOs

by Sophien Kamoun and Eric Ward

Home About Biofortified Blog

Crop plants with DNA deletions are not GMOs

by Sophien Kamoun and Eric Ward

- A regulatory not scientific question
- Two main regulatory frameworks for new crop varieties:
 - process-based
 - product-based

Following

The list of countries, which do not regulate targeted mutagenesis by genome editing under GMO legislation grows:

Japan USA Canada Argentina Brazil Chile Israel X

Australia 🛅 is likely next.

Only the EU ignores scientific consensus.

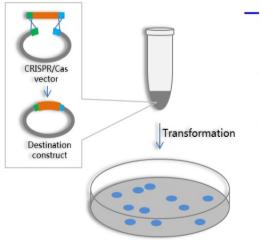
-- 我们专注于基因组编辑 ---

小鼠基因组编辑

- 单/多基因敲除,长片段敲除,条件性敲除
- DNA片段定点敲入、碱基替换
- 服务周期2~4个月
- 提供Founder小鼠或F1代小鼠

细胞系基因组编辑

- 常用细胞系(293T、Hela),小鼠胚胎干细胞以及iPS干细胞
- 单/多基因敲除,长片段敲除,DNA片段定点敲入、碱基替换
- 服务周期1~3个月


水稻基因组编辑

- 粳稻(如日本晴)、籼稻(如93-11)
- 单/多基因敲除,长片段敲除
- 服务周期2~4个月
- 提供至少3株成功突变的T0幼苗

大豆基因组编辑

- 常用品种Williams82、Jack
- 单基因敲除
- 服务周期3~9个月
- 提供至少1株成功突变的T0幼苗或3株T1幼苗

百格CRISPR/Cas载体构建试剂盒

一步载体构建,直接遗传转化,数百次的成功实验验证

- --简便 无需酶切,一步载体构建,直接用于遗传转化
- --快速 20°C反应30~60分钟即可
- --高效 1000个以上的菌落数,95%以上的阳性率,提供您所需的克隆
- --可靠 数百次的植物遗传转化实验,90%以上基因敲除成功率
- --**广泛** 涵盖拟南芥、油菜、水稻、小麦和大豆等

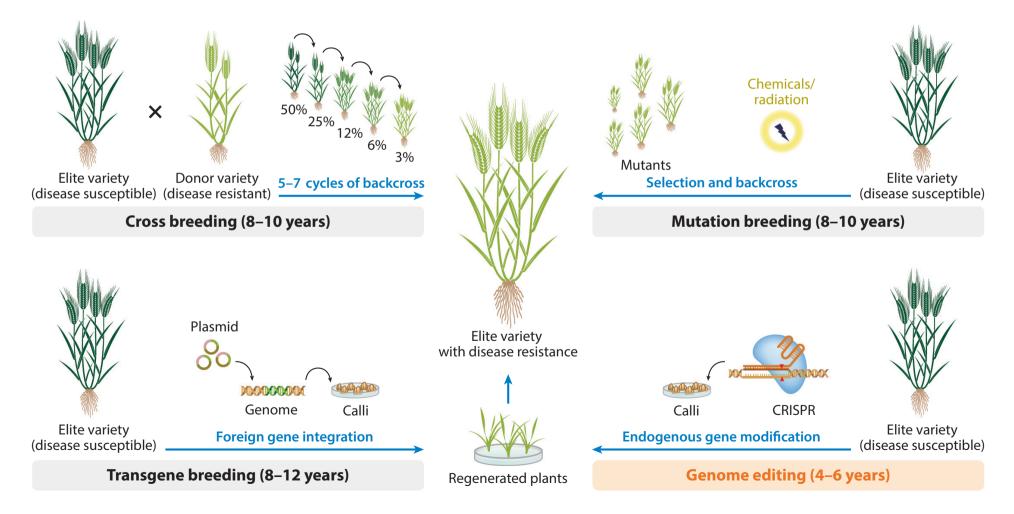
Genome-wide Targeted Mutagenesis in Rice Using the CRISPR/Cas9 System

Yuming Lu^{1,3}, Xiao Ye¹, Renming Guo¹, Jing Huang¹, Wei Wang², Jiuyou Tang², Longtao Tan⁴, Jian-kang Zhu³, Chengcai Chu² and Yangwen Qian^{1,*}

¹Biogle Genome Editing Center, Changzhou, Jiangsu Province 213125, China ²State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China ³Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China ⁴Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China ⁴Correspondence: Yangwan Qian (mw@bicelo.com)

*Correspondence: Yangwen Qian (qyw@biogle.cn)

http://dx.doi.org/10.1016/j.molp.2017.06.007



Annual Review of Plant Biology

CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture

Kunling Chen,^{1,*} Yanpeng Wang,^{1,*} Rui Zhang,¹ Huawei Zhang,¹ and Caixia Gao^{1,2}

Plant Biotechnology Journal (2019) 17, pp. 132-140

doi: 10.1111/pbi.12952

Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele

Laurence Tomlinson¹ (D), Ying Yang¹, Ryan Emenecker², Matthew Smoker¹, Jodie Taylor¹, Sara Perkins¹, Justine Smith¹, Dan MacLean¹, Neil E. Olszewski² and Jonathan D. G. Jones^{1,*}

¹The Sainsbury Laboratory, Norwich Research Park, Norwich, UK

²Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA

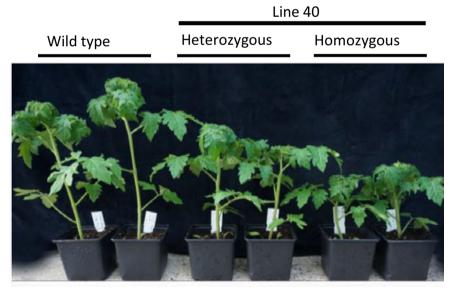
WT_MM	TGGAATGGATGAGCTTTTAGCTGTTT <mark>TGG</mark> GTTATAAAGTGAAGTCGTCT		
T-insertion	TGGAATGGATGcGCTTTTAGCTG T TTTTGGGTTATAAAGTGAAGTCGTCT		
	MMMMMMMMM		
5nt deletion	TGGAATGGATGcGCTTTTTTTTGGGTTATAAAGTGAAGTCGTCT		
	And Amm mm home		
3nt deletion	TGGAATGGATGcGCTTTTAGTTTTGGGTTATAAAGTGAAGTCGTCT		
	allet balling more and marked which		

Allelic series!

Plant Biotechnology Journal (2019) 17, pp. 132-140

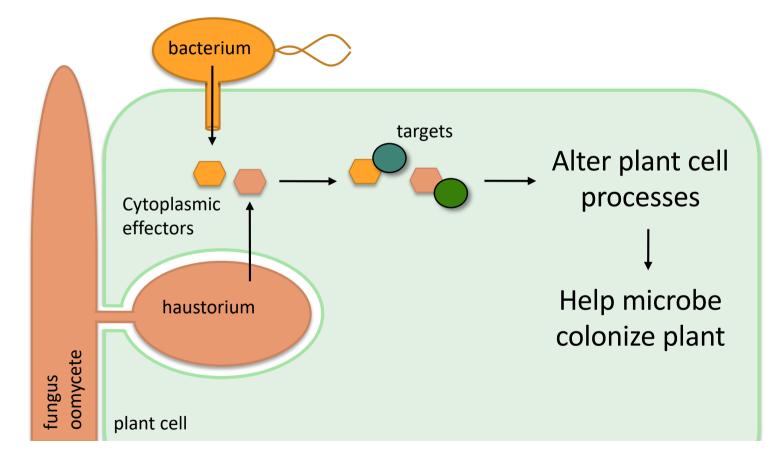
doi: 10.1111/pbi.12952

Using CRISPR/Cas9 genome editing in tomato to create a gibberellin-responsive dominant dwarf DELLA allele


Laurence Tomlinson¹ (D), Ying Yang¹, Ryan Emenecker², Matthew Smoker¹, Jodie Taylor¹, Sara Perkins¹, Justine Smith¹, Dan MacLean¹, Neil E. Olszewski² and Jonathan D. G. Jones^{1,*}

¹The Sainsbury Laboratory, Norwich Research Park, Norwich, UK

²Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA


WT_MM	TGGAATGGATGAGCTTTTAGCTGTTTTGGGTTATAAAGTGAAGTCGTCT		
T-insertion	TGGAATGGATGcGCTTTTAGCTG TTTTTGGGTTATAAAGTGAAGTCGTCT		
	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM		
5nt deletion	TGGAATGGATGcGCTTTTTTTTGGGTTATAAAGTGAAGTCGTCT		
	Min		
3nt deletion	TGGAATGGATGCGCTTTTAGTTTTGGGTTATAAAGTGAAGTCGTCT		

Allelic series!

The plant targets of pathogens facilitate infection

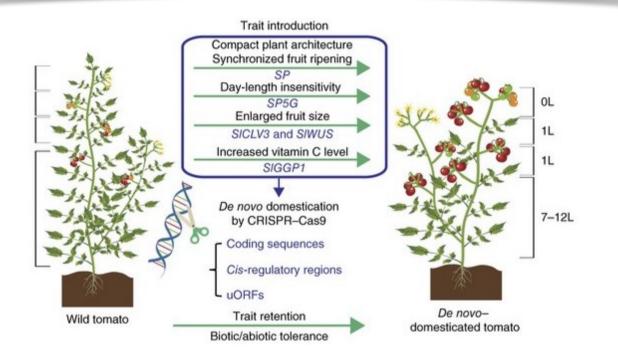
Susceptibility S genes!

CRISPR crops—removing genes for fungal resistance

	Target 1 PAM	PAM	Target 2
	ACATAGTAAAAGGTGTACCTGTGGTGGAGACTGGTGACCATCTTTT	CTGGTTTAATCGCCCTGCCCTTGTCCTATT	CTTGATTAACTTTGTAC TCTTTCAGG
Plant 1	ACATAGTAAAA <mark>GGTGTACCTGTGGTGGAGAC</mark> TGGTGACCATCTTTT	CTGGTTTAATCGCCCTGCCCTTGTCCTATT	CTTGATTAACTTTGTACTCTTTCAGG
Plant 2	ACATAGTAAAAGGTGTACCTGTGGTGGA	(CTTGATTAACTTTGTACTCTTTCAGG -48
Plant 8	ACATAGTAAAA <mark>GGTGTACCTGTGGTGGA</mark>		CTTGATTAACTTTGTACTCTTTCAGG -48
Plant 10	ACATAGTAAAA <mark>GGTGTACCTGTGGTGGA</mark> ACATAGTAAAA <mark>GGTGTACCTGTGGTGGA</mark>		CTTGATTAACTTTGTACTCTTTCAGG -48
Fiant IV	ACATAGTAAAAGGTGTACCTGTGGTGGA		-TTGATTAACTTTGTACTCTTTCAGG -49

resistant plant

susceptible plant


New Tomato Ideal for Urban Gardens and Even Outer Space Created Through Genetic Editing

By COLD SPRING HARBOR LABORATORY DECEMBER 31, 2019

De novo domestication of wild tomato using genome editing

Agustin Zsögön^{1,7}[®], Tomáš Čermák^{2,6,7}, Emmanuel Rezende Naves¹, Marcela Morato Notini³, Kai H Edel⁴, Stefan Weinl⁴, Luciano Freschi⁵, Daniel F Voytas², Jörg Kudla⁴[®] & Lázaro Eustáquio Pereira Peres³[®]

PLANT SCIENCES · 05 FEBRUARY 2021

Insta-crop: CRISPR enables high-speed plant domestication

A lanky species of wild rice turns compact and docile in a jiffy.

CRISPR and conservation biology

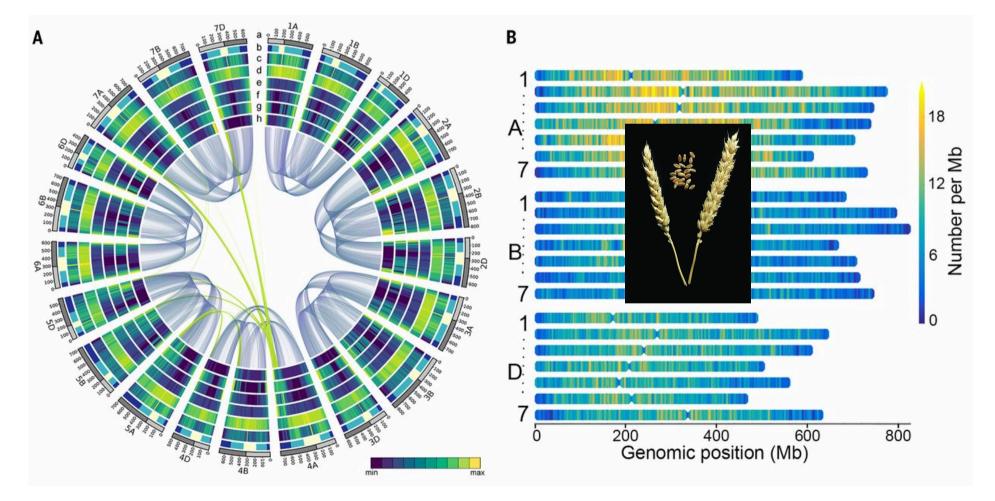
Crop conservation biology needs a bigger toolbox

to meet unprecedented challenges

climate change

- habitat loss
- invasive pathogens and pests

Adapted from RT Corlett Trends in Biotech 2017

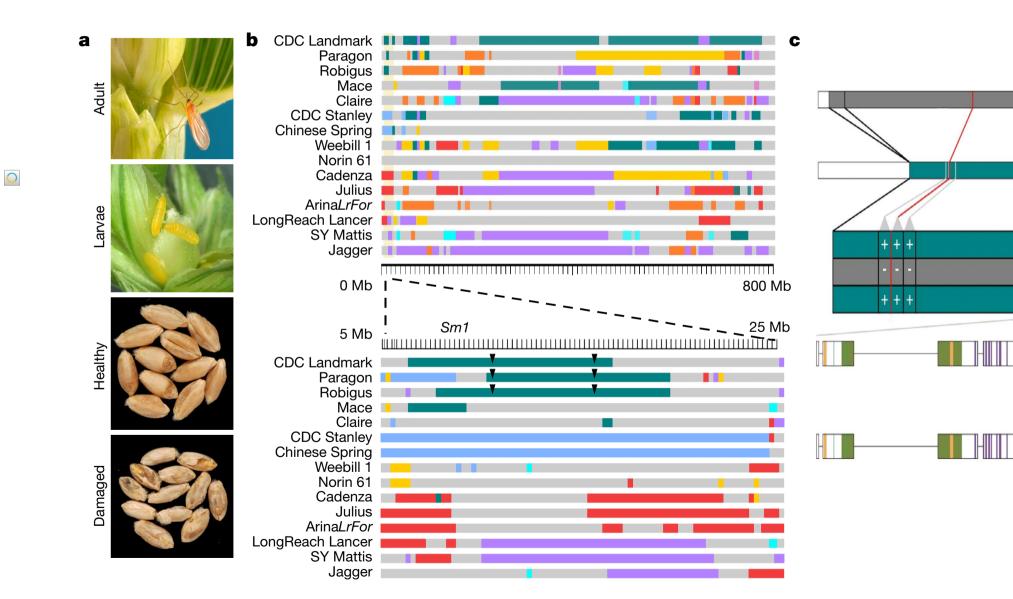

CRISPR and conservation biology

Conservation genomics—before we conserve, we need to know what's out there

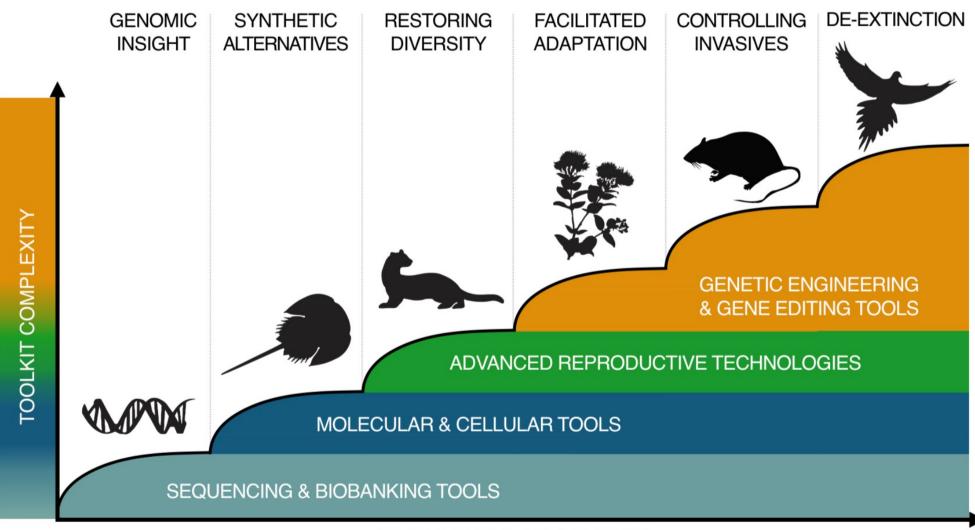
- Facilitated adaptation—introduce adaptive traits for conservation of endangered crops
- Crop de-extinction? − CRISPR can deliver it

Crop genomics—*just getting started!* 2018

wheat genome



Published by AAAS


Article

Multiple wheat genomes reveal global variation in modern breeding

2020

REVIVE & RESTORE IS BRINGING BIOTECHNOLOGIES TO CONSERVATION

TIMELINE FOR APPLICATION

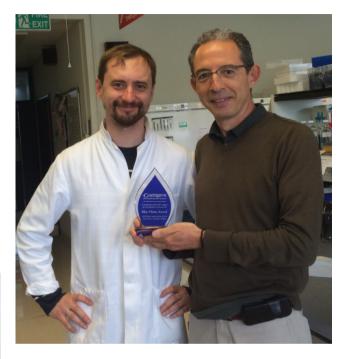
revive&restore

Plant genome editing is in its infancy...

"I didn't come here to tell you how this is going to end. I came here to tell you how it's going to begin." Neo 'The Matrix'

Acknowledgements

- Khaoula Belhaj Angela Chaparro Garcia
- - Joe Win

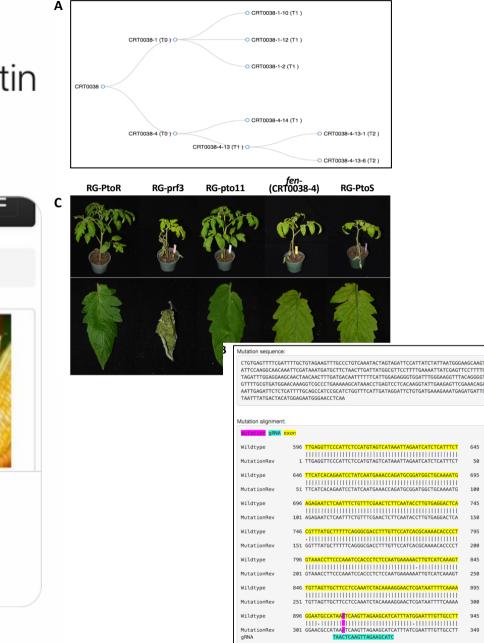


Diana Gomez

Adeline Harant

Thorsten Langner

Vladimir Nekrasov


THE SAINSBURY LABORATORY

Great Resource: Plant Genome Editing Database /via Greg Martin **@BTIscience @NSF**

Resource: Plant Genome Editing Database (2018) | Plants and Microbes scoop.it

29/10/2018, 19:13

Wildtype

MutationRev

645

695

100

150

795

200

845

250

945

349

963

367

