Don’t let seed dormancy be a headache: how to understand, classify and overcome it

Carol C. Baskin, University of Kentucky (USA)
Early interest in seed dormancy and germination

Theophrastus (c.372-287 B.C.)
(The Father of Botany)
Noted that germination can be influenced by climatic factors, inhibitors, seed age and seed coats

CCB – first seed germination study in 1966
Organizing seed dormancy

M.G. Nikolaeva

PHYSIOLOGY OF DEEP DORMANCY IN SEEDS

Translated from Russian

Published for the National Science Foundation, Washington, D.C. by the Idaho Program for Scientific Translations

1967 [1969]

Dr. Marianna G. Nikolaeva
Russian Seed Physiologist/Biologist
A classification scheme for seed dormancy modified from Nikolaeva

A. **Class** - Physiological dormancy (PD)
 - **Levels** - deep, intermediate, nondeep
 - **Types** - 1, 2, 3, 4, and 6 (of nondeep PD)

B. **Class** - Morphological dormancy (MD)

C. **Class** - Morphophysiological dormancy (MPD)
 - **Levels** - nondeep simple, intermediate simple, deep simple, nondeep simple epicotyl, deep simple epicotyl, deep simple double, nondeep complex, intermediate complex, and deep complex

D. **Class** - Physical dormancy (PY)
 (probably needs to be subdivided)

E. **Class** - Combinational dormancy (PY + PD)
 - **Level** - nondeep PD (probably both Type 1 and Type 2 are represented)

Mechanical dormancy is an aspect of PD, *i.e.*, mechanical restraint by (a) covering layer(s) of an embryo with low growth potential.

Evidence for **chemical dormancy** is equivocal.
(Baskin and Baskin, 2004)
We want to germinate seeds that we know very little about.
Are they ‘seeds’ or things that look like seeds? Were they fully matured when they were harvested?

Can you break the dormancy and germinate fresh seeds?

Maybe not if seeds were picked ‘green’

Make sure that seeds going into gene banks can be germinated
Do nonscarified seeds imbibe water?

- Increase in size
- Best to weigh the seeds
- May take several days/weeks for seeds to imbibe fully
Physical Dormancy (PY) (can not be recalcitrant)

- Water-impermeable seed (or fruit) coat
- Embryo fully developed
- If seed (or fruit) becomes water-permeable, germination occurs in less than about 4 weeks, usually within a few days.

Water gap on seed or fruit coat: it serves as environmental signal detector

[from Gehan Jayasuriya’s Ph.D. thesis (2008)]
Orders and families of angiosperms with physical dormancy

(Baskin, Baskin, and Li, 2000; Baskin et al., 2006)

<table>
<thead>
<tr>
<th>Order</th>
<th>Family</th>
<th>Dormancy class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabales</td>
<td>Fabaceae</td>
<td>PY water-impermeable seed coat</td>
</tr>
<tr>
<td>Surianaceae</td>
<td>PY water-impermeable endocarp</td>
<td></td>
</tr>
<tr>
<td>Geraniales</td>
<td>Geraniaceae</td>
<td>PY</td>
</tr>
<tr>
<td>Malvales</td>
<td>Bixaceae</td>
<td>PY</td>
</tr>
<tr>
<td></td>
<td>Cistaceae</td>
<td>PY</td>
</tr>
<tr>
<td></td>
<td>Cochlospermaceae</td>
<td>PY</td>
</tr>
<tr>
<td></td>
<td>Dipterocarpaceae</td>
<td>PY</td>
</tr>
<tr>
<td></td>
<td>Malvaceae</td>
<td>PY</td>
</tr>
<tr>
<td></td>
<td>Sarcolaenaceae</td>
<td>PY</td>
</tr>
<tr>
<td></td>
<td>Sphaerosepalaceae</td>
<td>PY</td>
</tr>
<tr>
<td>Proteales</td>
<td>Nelumbonaceae</td>
<td>PY</td>
</tr>
<tr>
<td>Rosales</td>
<td>Rhamnaceae</td>
<td>PY</td>
</tr>
<tr>
<td>Sapindales</td>
<td>Anacardiaceae</td>
<td>PY</td>
</tr>
<tr>
<td></td>
<td>Sapindaceae</td>
<td>PY</td>
</tr>
<tr>
<td>Solanales</td>
<td>Convolvulaceae</td>
<td>PY</td>
</tr>
<tr>
<td>Zingiberales</td>
<td>Cannaceae</td>
<td>PY</td>
</tr>
</tbody>
</table>

For most of these families, not all members of the family have PY.

*including subfamilies Monotoideae and Pakaraimoideae but not subfamily Dipterocarpoideae
*b including Bombacaceae, Sterculiaceae, and Tiliaceae; *c including Cuscutaceae
Breaking physical dormancy in the laboratory

- **(mechanical scarification)**
- **(acid scarification)**
- **(wet heat)**
- **(dry heat)**

Sulfuric Acid

Precautions:
- Hazardous
- Extremely Corrosive
- Oxidizer
- Requires Protective Equipment
Do seeds have a small embryo?

- Seeds imbibe water.
- Seeds germinate within about 7-30 days.
- Seeds have an underdeveloped embryo.
- “Dormancy” period is the time required for embryo to grow.

Morphological Dormancy (MD)
(could be either recalcitrant or orthodox)

Kinds of small embryos

Example of embryo growth
Physiological Dormancy (PD)
(could be either recalcitrant or orthodox)

• Seeds imbibe water.
• Seeds have fully developed embryos.
• Germination takes longer than about 30 days.
• Physiological inhibiting mechanism in embryo (PIM)
• PIM results in low growth potential of embryo.
• Sometimes, scarified seeds with PD will germinate because the mechanical restriction has been released.

• Moist warm (≥ 15 °C) and/or moist cold (c. 0-10° C) stratification is (are) required to increase growth potential of the embryo.
World biogeography of nondormancy and the five classes of seed dormancy

What proportion of the dormant seeds has PD?

United States | 49.3%
Semievergreen | 60.8%
Dry | 54.2%
Savanna | 51.0%
Hot desert | 66.9%
Montane | 63.6%
Alpine | 57.8%
Broadleaf | 62.1%
Deciduous | 66.3%
Steppes | 73.2%
Matorral | 65.6%
Cold desert | 74.9%
Woodland | 61.8%
Montane | 74.4%
Boreal | 69.1%
Tundra | 66.8%

(Baskin and Baskin, 2014)
Physiological dormancy in angiosperms

435 families of angiosperms

- 61.4% have PD
- 20.5% MD/MPD
- 4.1% PY
- 2.3% Nondormant (ND)

10.8% no information [47 families – no data]

PD + ND in 151 of 435 families (34.7%)
Why is there so much PD?

Fine-tuning of the species to its environment

- Three different levels of PD: nondeep, intermediate and deep
- Six types of nondeep PD
- Dormancy-breaking: warm and/or cold stratification
- Afterripening (breaking of PD) in dry storage

AFTER PD IS BROKEN:

- Temperatures and light/dark requirements for germination
- Chemical stimulation of germination: smoke, ethylene, chemicals from host plant
Combinational Dormancy (PY+PD)

(cannot be recalcitrant)

- Seeds (or fruits) do not imbibe water.
- Embryo is fully developed.
- Embryo has some degree of nondeep physiological dormancy.
- Seeds have both physical and physiological dormancy.

+ PD = (PY+PD)
Combination of PY + PD

- Seed (or fruit) coat is water impermeable
- Embryo has physiological dormancy
- Two kinds in KY:

1. PY broken in summer --- PD broken in winter
 germinates in spring [rebud]

2. PD broken in summer --- PY broken in autumn
 germinates in autumn [wild geranium]
Morphophysiological Dormancy (MPD)
(could be either recalcitrant or orthodox)

- Seeds imbibe water.
- Germination takes longer than about 4 weeks.
- Seeds have underdeveloped embryos.
- Embryos are physiologically dormant.
- There are 9 described levels of MPD.

\[+ \text{PD} = \text{MPD} \]
Classification of physiological dormancy

Class 3. Physiological [C]

Subclass 1. Regular

Level 1. Nondeep (C₁) Most !!
 Type 1. C₁a or C₁b
 Type 2. C₁a or C₁b
 Type 3. C₁a or C₁b
 Type 4. C₁b
 Type 5. C₁a or C₁b

Level 2. Intermediate (C₂)
 Type 1. (C₂b) [not confirmed]
 Type 2. (C₂a) [not confirmed]

Level 3. Deep (C₃)
 Type 1. (C₃b)
 Type 2. (C₃a)

Subclass 2. Epicotyl

Level 1. Nondeep
 Type 1. C₁b (root) - C₁a (shoot)
 Type 2. C₁b (root) - C₁a (shoot)
 Type 3. C₁b (root) - C₁a (shoot)
 Type 4. C₁b (root) - C₁a (shoot)

Level 2. Deep
 Type 1. C₃b (root) - C₃a (shoot)
 Type 2. C₃b (root) - C₃a (shoot)

(Baskin and Baskin, 2014)

Epicotyl PD in *Platonia insignis* (Clusiaceae)

(Mourão and Beltrati, 1995)
Nondeep physiological dormancy

- Excised embryo may grow normally.
- Scarification may promote germination.
- GA$_3$ may promote germination.
- Dormancy-break and germination could require very different conditions, especially temperature.

Important question: Where does the species grow?
Breaking nondeep physiological dormancy: temperate regions

Dormancy-break Germination

Hot summer → Cool autumn
 dry or wet/dry moist

Temperate region (Kentucky): Winter annuals a few monocarpic and polycarpic perennials

Mediterranean regions: Winter annuals and many monocarpic and polycarpic perennials perennials
Breaking nondeep physiological dormancy: temperate regions

Dormancy-break

Cold winter moist → Cool/warm spring moist

Germination

Summer annuals and many monocarpic and polycarpic perennials
Breaking nondeep physiological dormancy: subtropical/tropical regions

- Hot/warm and wet all year
 - Nondormant seeds?
 - Slow breaking of dormancy
 → immediate germination

- Hot/warm all year, with dry and wet seasons
 - dormancy-break in hot dry season
 → germination in wet season
Germination of *Arabidopsis thaliana* seeds after various periods of burial in soil

Temperatures in nonheated greenhouse

Annual dormancy/nondormancy cycle

No germination in darkness

(Baskin and Baskin, 1983)
Three levels of physiological dormancy (PD)

Nondeep

Intermediate – seeds require cold stratification

Deep
Intermediate PD

- Excised embryos will grow normally
- GA_3 may (or may not) promote germination
- Dormancy-break in lab is slow; long periods of cold stratification are required
- Dormancy-break and germination at same (low) temperatures (e.g. 5°C)
- Warm stratification (or dry storage) may decrease the length of the cold stratification period required to break dormancy
Germination of *Floerkea proserpinacoides* (Limnanthaceae) seeds at 5°C after 0-12 weeks of warm stratification at 30/15°C (Baskin et al., 1988)

Warm stratification prior to cold stratification decreases the amount of cold stratification required to break dormancy.

Temperature requirements for dormancy-break and germination are the same.

(Baskin et al., 1988)
Intermediate PD

[80 species, 20 studied in detail]
Amaranthaceae, Berberidaceae, Betulaceae, Brassicaceae, Cucurbitaceae, Cupressaceae, Ericaceae, Fagaceae, Lamiaceae, Limnanthaceae, Oleaceae, Rosaceae and Sapindaceae

Does intermediate PD occur in subtropical and tropical regions??
[Would a brief period of low temperatures (in the subtropics) greatly reduce the length of the warm stratification period needed to break dormancy?]

Three levels of physiological dormancy (PD)

Nondeep
Intermediate
Deep

seeds require a long period (3-6 mo) of cold stratification

However

seeds require a long period of (4-16 mo) warm stratification

discovered in an ericaceous shrub in Hawaii

Leptecophylla tameiameiae
Deep PD

• Excised embryos either do not grow, or the plant is deformed (nanism).
• GA3 does not work.
• Dormancy-break and germination occur at same temperature regime.

• About 20 temperate species in the Balsaminaceae, Celastraceae, Rosaceae and Sapindaceae (require cold stratification)

• It took 3 to 8 months before seeds of species of Burseraceae, Clusiaceae, Combretaceae, Euphorbiaceae, Fagaceae, Flacourtiaceae, Hernandiaceae, Lecythidaceae, Meliaceae, Menispermaceae, Myrtaceae, Rhizophoraceae, Rutaceae, Symplocaceae and Verbenaceae began to germinate in phenology studies of tropical trees in Malaysia (Ng,1991, 1992),
Design for move-along experiment
(Baskin and Baskin, 2004)

<table>
<thead>
<tr>
<th>Temperature Regime (°C)</th>
<th>Time at Each Temperature in Series (weeks)</th>
<th>Controls*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15/6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30/15</td>
</tr>
<tr>
<td>summer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30/15</td>
<td>5</td>
<td>Winter</td>
</tr>
<tr>
<td>20/10</td>
<td>15/6</td>
<td>e. spring</td>
</tr>
<tr>
<td>15/6</td>
<td>20/10</td>
<td>lat. aut.</td>
</tr>
<tr>
<td>5</td>
<td>30/15</td>
<td>late spr.</td>
</tr>
<tr>
<td>15/6</td>
<td>20/10</td>
<td>sum.</td>
</tr>
<tr>
<td>20/10</td>
<td>15/6</td>
<td></td>
</tr>
<tr>
<td>30/15</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>winter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/10</td>
<td>15/6</td>
<td></td>
</tr>
<tr>
<td>15/6</td>
<td>20/10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>30/15</td>
<td></td>
</tr>
</tbody>
</table>

*Controls are seeds that remain on a wet substrate at 5°C, 15/6°C, 20/10°C, and 30/15°C for the duration of the experiment.

*If number of seeds is limited, 15/6°C can be omitted and time at 20/10°C increased to 6 weeks.
Move-along experiment to determine if the water-permeable seeds require warm and/or cold stratification for dormancy-break and germination.

Germination percentages are in parentheses.

Erythronium americanum nondeep complex MPD

(Baskin and Baskin 2005)
A special concern: effects of long-term drying on seed dormancy and germination

• Fresh seeds of *Arthropodium cirratum* (Asparagaceae) did not germinate, but after 6 mo of dry storage they germinated to about 95%.

• After 9 mo of dry storage only about 55% of the seeds germinated; 95% of them were viable (Conner and Conner, 1988).

• “Low germination after seed banking due to reinforced seed dormancy rather than seed mortality” (Logeswaran and Ensslin in the *Samara*, December 2022)

Questions:
Questions

• Is this a deeper level of PD?
• How can this dormancy be broken?
• Are we seeing dormancy cycling?

• Cycling at constant conditions
 (p. 87 in Baskin & Baskin 2014 “Seeds”)
Finally, if seeds are viable don’t throw them away! Keep moving them to new conditions or simply wait

- Think about what might happen to the seeds in the field (i.e. ‘think like a seed’)
- New temperature regimes
- Wetting and drying
- Keep waiting/watching
Germination of *Cheirodendron trigynum* seeds

Seeds require many weeks of warm moist conditions before the embryo grows and the radicle emerges.

(Baskin et al., 2015)
Thank you

Tropical montane forest, Kauai, Hawaii, USA

Carol.baskin@uky.edu