

Beyond the Ark: Why Saving Seeds isn't Enough

Stef de Haan, GROW Webinar, June 10

Changing the status quo

The Rhetoric: doomsday diversity loss + inevitability of 'modernization' + lacking diversity monitoring = blindness

The Deadlock: business as usual + lack of trust + stalled reforms + limited ABS innovation = paralysis

The Change Needed: approaches that are disruptive, holistic and provide positive examples of reconciling the interests of global and local communities through integrated conservation and innovative farmer's rights arrangements

Moving toward an INTEGRATED CONSERVATION framework

De Haan et al. forthcoming

Let's first have a peak at our OLD ROOTS

Morphotype

PUMAPA MAKIN

Morphotype (Bertonio, 1612)

POTATO GENETIC EROSION SURVEY - PRELIMINARY REPORT JANUARY 1973

J. G. Hawkes

1. INTRODUCTION

The F.A.O. Unit for Crop Ecology and Genetic Resources asked me to carry out a survey, through correspondents, of the extent to which genetic erosion is or may be taking place in the centres of variability of the cultivated potato and its wild relatives.

Until 1971 I had assumed that very little erosion was taking place in the main gene centres of the South American Andes, though much evidence was available to show that in Chile the old land races had been disappearing rapidly from about 1950 onwards, because of the bad Phytophthora epidemics which occurred at that time.

However, whilst taking part in a collecting expedition to Peru and Bolivia in 1971 I became aware that the richness of varietal diversity had diminished very startlingly, as compared with the situation in 1939 when I last visited those countries to collect cultivated potatoes. I had assumed that the Andean potatoes would be protected from genetic erosion by the fact that standard European and North American varieties cannot be grown at the high altitudes to which the Andean potatoes are adapted. Nevertheless, the Andean potatoes themselves had changed. In fact, during this 30-year period the local breeders, some of whom I myself had helped to train, had begun the processes of breeding and selection which are now causing the replacement of much of the old richness of primitive forms and species with better yielding standard varieties.

Furthermore, agronomists and extension officers had promoted the cultivation of a limited number of selected variants or land races, even when new cultivars were not available. These also, were replacing the old richness of varietal diversity.

Hawkes. 1973

DER SANDTER

studies. extinction.

14. Potato collecting expeditions in Chile, Bolivia and Peru, and the genetic erosion of indigenous cultivars

C. OCHOA

Although the varietal richness of the South American indigenous potatoes has been known for more than half a century (Cevallos Tovar, 1914; Leguas, 1897; Wight, 1916) it was only after the publication of the work of S. M. Bukasov in 1933 that the real importance of this material began to be understood. From that time onwards expeditions have been sent from various parts of the world to collect the wild and cultivated potatoes of the Americas for subsequent utilisation in plant breeding

Unfortunately, this immense genetic reserve is not inexhaustible. On the contrary, it is in danger of partial or complete destruction in a short space of time, especially where the cultivated species are concerned. The danger of genetic erosion in potatoes has been seen for some time. Thus Brücher (1963a) stated that he had observed a great reduction of cultivated diploid potatoes in certain regions of Bolivia and Argentina. The same author (Brücher, 1969) indicated that he had found only tetraploid potatoes in the Venezuelan Andes of Mérida, Táchira and Trujillo, where it was previously said that varieties of the diploid cultivated Solanum phureja occurred. He ended by observing that the diploid 'criolla' potatoes of Venezuela were on the way to complete

Genetic erosion and exploration in Chilean potatoes

One of the areas most strongly affected by genetic erosion in primitive potatoes must surely be the Chiloé Archipelago in southern Chile. Vallega & de Santis (1938) mention that, of the forms collected by them in that year in Chiloé, particularly in Yutuy, all but one or two correspond to those found ten years before by the Russian botanist Juzepczuk. Some 200 samples were found on that trip in a relatively restricted area. On the other hand, Castronovo found not much more than half that

167

Ochoa. 1975

Dynamics of Andean Potato Agriculture¹

STEPHEN B. BRUSH,² HEATH J. CARNEY,³ AND ZÓSIMO HUAMÁN⁴

The invention and development of agriculture created tremendous diversity among the species selected for domestication. This diversity is still evident in cradle areas of domestication, maintained as ancestral varieties or landraces by traditional farmers. These centers of diversity have been recognized as imporant since N. I. Vavilov's work 50 yr ago. Archaeologically, they are significant because of their association with the origins of agriculture and the resulting new way of life for human populations. Genetically, they are important to geneticists and plant breeders as sources of germ plasm for the improvement of our modern crop varieties and for backup crop genetic resources (Harlan, 1976; Oldfield, 1979). Moreover, they are areas where ongoing crop evolution occurs in and around fields. They can thus provide information as to the ancestry of modern crop cultivars and enable us to understand better the genetic architecture of our modern domesticates.

Although extensive germ plasm collecting and archaeological and botanical research have been undertaken in these areas of crop evolution and crop genetic diversity, our knowledge of the dynamics and systematics of traditional agriculture that supports this diversity remains rudimentary. Little anthropological or ethnobotanical investigation has concerned itself directly with how farmers in these areas identify, select, maintain and distribute the diverse genetic material of their crops. This lack of research contrasts sharply with recent advances in understanding the overall patterns of folk plant classification (Berlin et al., 1974; Conklin, 1972; Witkowski and Brown, 1978) and the wealth of material on the

Brush et al., Economic Botany, 1981

AN ETHNOBOTANICAL FIELD STUDY OF PRIMITIVE POTATO VARIETIES IN PERU

¹International Potato Center (CIP), Lima, Peru ²Department of Plant Biology, University of Birmingham, England

INDEX WORDS

Potatoes, ethnobotany, primitive varieties, ploidy.

SUMMARY

In field studies carried out at Cuyo-Cuyo, southern Peru, an area of traditional agriculture, the varietal and ploidy richness of two potato fields cultivated by the Quechua Indians was determined. Tetraploid primitive varieties were the most common, representing 95% of all plants sampled, but diploids and triploids were also found. The tuber crops agricultural system on the Incaic terraces was documented, and factors affecting the selection of potato varieties were assessed. Flavour and dry matter content were the most important quality factors indicated by local farmers.

INTRODUCTION

Ethnobotanical field studies of the native South American primitive potato varieties have long been neglected. Yet to understand the evolution of these cultivated potatoes, it is necessary to appreciate the interrelationship of man and his crop. UGENT (1968) described criolla potatoes of the Nevado de Toluca, Mexico, and how they could be found in mixtures in the same field. He suggested that the nature of such potato fields, containing varieties with varying degrees of susceptibility, may be the best way of

Euphytica 29 (1980) 107-113

M. T. JACKSON¹, J. G. HAWKES² and P. R. ROWE¹

Received 27 February 1979

Jackson et al., Euphytica, 1980

Timeline of the evolution of in-situ conservation R&D at CIP

YEAR	FLAGSHIP FEATURE	SOURCE
1972-1975	Initial concerns about genetic erosion	Hawkes, 1973; Ochoa 1975
1980-1992	Diversity and anthropology in the Andes	Brush, 2004; Rhoades, 1990
1993-2003	ARTC biodiversity	Seminario, 2004
1997 till date	Community seed banks / repatriation	Huaman, 2005; Lüttringhaus et al.
		2021
1998-2010	Papa Andina: value chains for native potatoes	Devaux et al. 2006
2005 till date	Potato Park (ano 98) – 1 st agreement	GRAIN, 2005
2006	First <i>in-situ</i> landrace catalogue	CIP, 2006
2013 till date	Systematic monitoring	De Haan et al. 2016
2019 till date	Integrated conservation	De Haan et al. forthcoming

PERU: a living laboratory of on-farm conservation approaches

- Landscape and reserves: agrobiodiversity zones, landscape reserves, park systems
- Benefit Sharing & PES Schemes: ReSCA, AGUAPAN
- Cultural reaffirmation
- Seed systems interventions: diversity fairs, community seed banks, seed banks,
- Varietal repatriation
- Market interventions: farmer markets, ecommerce, geographical indication
- Baselining and cataloging
- Chef and gastronomy movement
- Inclusion of in NDC's and national policies

Decreto Supremone 020-2016-MINAGRI

DECRETO SUPREMO QUE APRUEBA EL REGLAMENTO SOBRE FORMALIZACIÓN DEL RECONOCIMIENTO DE ZONAS DE AGROBIODIVERSIDAD ORIENTADAS A LA CONSERVACIÓN Y USO SOSTENIBLE DE ESPECIES NATIVAS CULTIVADAS POR PARTE DE PUEBLOS INDÍGENAS

EL PRESIDENTE DE LA REPÚBLICA

CONSIDERANDO:

Que, el artículo 68 de la Constitución Política del Perú dispone que el Estado está obligado a promover la conservación de la diversidad biológica y de las áreas naturales protegidas;

Que, el artículo 8 del Convenio sobre la Diversidad Biológica, adoptado en Río de Janeiro el 05 de junio de 1992 y suscrito el 12 de junio de 1992, aprobado por Resolución Legislativa N° 26181, referido a la conservación in situ, señala que cada Parte Contratante establecerá un sistema de áreas protegidas o áreas donde haya que tomar medidas especiales para conservar la diversidad biológica; señala además, que con arreglo a su legislación nacional, respetará, preservará y mantendrá los conocimientos, las innovaciones y las prácticas de las comunidades indígenas y locales que entrañen estilos tradicionales de vida pertinentes para la conservación y la futilización sostenible de la diversidad biológica y promoverá su aplicación más amplia, con la aprobación y la participación de quienes posean esos conocimientos, innovaciones y prácticas, y fomentará que los beneficios derivados de la utilización de esos conocimientos, innovaciones y prácticas se compartan equitativamente;

Que, el numeral 6.2 del artículo 6 del Tratado Internacional sobre los Recursos Fitogenéticos para la Alimentación y la Agricultura, suscrito en la ciudad de Roma, República Italiana, el 08 de octubre de 2002, ratificado por Decreto Supremo Nº 012-2003-RE, establece que la utilización sostenible de los recursos fitogenéticos para la alimentación y la agricultura puede incluir, como medida, la prosecución de políticas agrícolas equitativas que promuevan, cuando proceda, el establecimiento y mantenimiento de diversos sistemas de cultivo que favorezcan la utilización sostenible de la diversidad agrobiológica y de otros recursos naturales;

Example: supreme decree 020-2016-MINAGRI

Key differences between *ex-situ* and *in-situ* conservation systems

	Ex-situ
Туре	Formal
Nature	Ideally static
Objective is conservation	Yes
Typical managers	Genebank curators
Typical users	Breeders, scientists
Scale	(Inter)national
Societal embeddedness	Low
Primary outcome	Breeders creating new varieties
Primary impact(s)	Productivity and food security

In-situ
Informal
Commonly dynamic
No
Smallholder farmers
Smallholder farmers
Local
High
Farmers adapting to change
Resilient livelihoods and identity

In-situ conservation: PLURALITY

- ✓ Embedded within livelihood strategies

Ex-situ conservation:

- Genebanks
- Botanical gardens
- In-vitro, cryopreservation, cold store, ...
- Etc.

Examples of an INTEGRATED CONSERVATION framework

De Haan et al. forthcoming

1. MONITORING

A network of systematic monitoring sites or observatories

VENEZUELA ECUADOR BRASIL PERÚ Endemismo **Riqueza alta** DARAGIL Tetraploid 0 Diploid ARGENTINA Tri-Pentaploid Figura 1. Mapa esquemático con microcentros potenciales para el monitoreo de la diversidad de papa en Sudamérica.

Initial regional hotspot priority setting (2014)

Source: Chirapaq Ñan Initiative

Extensive Refinement for Peru (2021-2022)

Source: Dawson et al. 2023

Dawson et al. 2023

Dawson et al. 2023

Started with 9 and now has 11 tools for systematic monitoring

IN-SITU MONITORING TOOLBOX

RIKUY

AGROBIO

Esta herramienta permite identificar rápidamente

frecuencia de las variedades presentes en un área determinar y las motivaciones de las

Entender el estado de la agrobiodiversidad es prioritario para asegurar el modo de vida de las personas. Por ejemplo, conocer que variedades de maíz, frejol, o papa existen en una zona puede ayudar a conservar y usar estos materiales.

Time-tagged In-Depth Baselining for each unique hotspots

• Total landrace diversity

• Conservation status (= red list):

- OCS = evenness
- RCF = relative abundance

Genetic fingerprint for each landrace

- Morphological characterization
- Ethnobotanical key data
- Agronomic key data
- Nutritional composition
- Spatial distribution maps

Hotspot Yauli – Paucará, Huancavelica

Total Diversity Cataloging

- 1 Nombre vernacular

4 Descripción morfológica

Lista de descriptores aplicados por parte morfológica y estado fenológico de la planta.

5 Información adicional

Información complementaria de cada variedad

6 Valor nutricional

Valor de los micronutrientes que contribuye a una mejor nutrición

7 Khipu molecular

Representa la huella genética de una variedad

8 Caracteres agronómicos

Describen el rendimiento y la resiliencia de las variedades frente a enfermedades o estrés ambiental.

9 Usos culinarios

Describe las diferentes formas de consumo de la variedad descrita en las comunidades

ACHANQAYRA Manzanita, puka achanqayra papa huancayo, ucupapa

e referencia a una begonia (Begonia veitchii)					
ESCRIPCIÓN MORFOLÓGICA					
ito de crecimiento	Decumbente				
or del tallo	Verde, con pocas mar				
na de las alas del tallo	Recta				
nero de foliolos laterales	3 pares				
nero de Interhojuelas	1 par				
or del pedicelo	Ligeramente pigment				
	lo largo y en la articul				
r del cáliz	Verde, con pocas mar				
do de floración	Escaso				
na de la corola	Rotada				
r primario de la flor	Morado claro				
or secundario de la flor	Blanco				
ribución del color secundario	Acumen - ambos (haz				
nentación en las anteras	Sin antocian inas				
nentación en el pistilo	Pigmentación en la p				
	interna del ovario				
na del tubérculo	Redondo aplanado				
undidad de ojos	Superficial				
or primario de la piel del tubérculo	Rojo-morado daro				
r secundarlo de la plei del tubérculo	Amarillo				

ubérculo olor primario de la pulpa del tubérculo Crema Color secundario de la pulpa del tubérculo Ausent ón del color secundario (pulpa) Aus darlo del brote Ición del color secundario (brote) En las vem

86 CATÁLOGO MICROCENTRO YAULI - PAUCAR

QUPURAKI

ESCRIPCIÓN MORFOLÓGICA	
bito de crecimiento de la planta	Decumbente
or del tallo	Verde
ma de las alas del tallo	Recta
mero de foliolos laterales	7 pares
mero de interhojuelas	3 pares
or del pedicelo	Ligeramente pigment
	lo largo y en la articul
or del cáliz	Pigmentado, con poco
ido de floración	Escaso
ma de la corola	Estrellada
or primario de la flor	Violeta intermedio
or secundario de la flor	Ausente
tribución del color secundario (flor)	Ausente
mentación en anteras	Bandas y ápice pigme
mentación en el pistilo	Estilo pigmentado
ma del tubérculo	Oblongo-alargado
fundidad de ojos	Profundo
or primario de la piel del tubérculo	Morado claro
or secundario de la piel del tubérculo	Ausente
tribución del color secundario	
bérculo)	Ausente
or primario de la pulpa del tubérculo	Blanco
or secundario de la pulpa del tubérculo	Ausente
tribución del color secundario (pulpa)	Ausente
or primario del brote	Violeta
or secundario del brote	Blanco
tribución del color secundario (brote)	En las yemas

olanum tuberosum (Grupo Andigenun Ploidía: 2n=4x=48 ABUNDANCIA RELATIVA

RCF: Muy escasa OCF: Muy pocos hogare CARACTERES AGRONÓ

0.45 kg por planta

ANGELPA TANTAN

Pan de ángel

DESCRIPCIÓN MORFOLÓGICA Hábito de crecimiento de la planta Color del tallo Forma de las alas del tallo Número de foliolos laterale Número de Interhojuelas

Color del pedicelo

Color del cáliz Grado de floración Forma de la corola Color primario de la flor Color secundario de la flor Distribución del color secun Pigmentación en antera Pigmentación en el pistilo

Forma del tubérculo

Profundidad de ojos Color primario de la piel del tubérculo Color secundario de la piel del tubérculo Distribución del color secundario (tubérculo) coror primario de la pulpa del tubérculo Crema color secundario de la pulpa del tubérculo Morado (stribución del set-Color primario de la pulpa del tubérculo stribución del color secundario (pulpa) Pocas mancha Color primario del brote Color secundario del brote ción del color sec dario (brote) En el ápic

Muru pillpinto, muru markina, wamanpa uman ruyru caramelo, chirapa

Decumbente erde, con m 5 pares 2 pares ligeramente pigmentado lo largo y en la articulació Rotada Morado in Ausente 5in antocian Pigmentado en la

Medio

Manchas dispe hogares. Según los agricultores, es el pan que antes alimentaba a los ingeles. Si bien se usa para hao chuño, su cáscara se desprend

con dificultad y se parte

cuando se pisa

Ploidía: 2n=4x=48 ABUNDANCIA RELATIVA BCE: Abundante CF: Muchos hogares CARACTERES AGRONÓMICO

0.63 kg por planta medio de tubé lanta: 28 eacción a rancha: Resis eacción a helada: Susc ango de adaptación: 3800 - 4400 ms

USOS CULINARIO

100 CATÁLOGO MICROCENTRO YAULI - PAUCAR

icante por lo o

añando las papas con aj

a a una manzana, razón de su

Ploidía: 2n=2x=24 ABUNDANCIA RELATIVA RCF: Escasa OCE.

CARACTERES AGRON

Reacción a helada: Tol

Verde

5 pares, 4 pares

Verde, con abu

borto de bo

Pentagonal

Morado intern

Blanco morad

PUKA PALTA

Rojo aplanado

DESCRIPCIÓN MORFOLÓGICA Hábito de crecimiento de la planta Color del tallo Forma de las alas del tallo úmero de follolos late lúmero de Interhojuela Color del pedicelo Color del cáliz Grado de floración Forma de la corola Color primario de la flo Color secundario de la flor Distribución del color secu ligmentación en antera Igmentación en el pistilo

orma del tubércule

Profundidad de ojos Color primario de la piel del tubérculo Color secundario de la piel del tubérculo Distribución del color secundario tubérculo) Color primario de la pulpa del tubérculo Crema Color secundario de la pulpa del tubérculo Ausente ución del color secundario (pulpa) Color primario del brote Morado Color secundario del brote Blanco stribución del color secundario (brote) En las vemas

169 catálogo microcentro yauli - paucará

Semierecto decumbente

e expone al sol, adquiere un sabo inte Solo se siembra er

Ploidía: 2n=4x=4 ABUNDANCIA RELATIVA

RCF: Escasa OCF: Muy pocos hogares

CARACTERES AGRONÓMICOS

54 kg por planta Número promedio de tubérculos planta: 23 Reacción a rancha: Resistente Reacción a helada: Tolerant Tiempo de bro

USOS CULINA chuño, quiso Tiempo de

Puka yungay, mahuau, esponilla

Quantitative Landrace Red Listing based on pGIS sampling

MOST ABUNDANT

Variedades Ploidía		RCF	Clasificación	OCF	Clasificación	
Rosado Aqu Suytu	2n=3x=36	19.357	Abundante	0.916	Mayoría de hogares	
Ruyru Puqya	2n=2x=24	11.983	Abundante	0.771	Mayoría de hogares	
Runtus	2n=2x=24	9.814	Abundante	0.788	Mayoría de hogares	
Peruanita	2n=2x=24	5.689	Abundante	0.631	Mayoría de hogares	
Camotillo	2n=2x=24	4.902	Abundante	0.520	Mayoría de hogares	
Traqin Waqachi	2n=4x=48	3.743	Abundante	0.542	Mayoría de hogares	
Amarilis	2n=4x=48	3.735	Abundante	0.285	Mayoría de hogares	
Yana Manua	2n=4x=48	3.056	Abundante	0.413	Mayoría de hogares	
Maco	2n=4x=48	2.996	Abundante	0.419	Mayoría de hogares	
Puka Huayro	2n=3x=36	2.680	Abundante	46.582	Mayoría de hogares	
Azul Aqu Suytu	2n=3x=36	1.888	Abundante	0.408	Mayoría de hogares	
Allqa Walash	2n=3x=36	1.641	Abundante	0.380	Mayoría de hogares	
Yana Winku	2n=4x=48	1.324	Abundante	40.006	Mayoría de hogares	
Cordovina	2n=2x=24	1.266	Abundante	0.385	Mayoría de hogares	
Wanca Lliclla	2n=4x=48	1.228	Abundante	0.162	Muchos hogares	
Qori Markina	2n=4x=48	1.216	Abundante	0.340	Mayoría de hogares	
Frescos	2n=4x=48	1.197	Abundante	0.257	Mayoría de hogares	
Yuraq Huayro	2n=4x=48	1.184	Abundante	0.268	Mayoría de hogares	
Azul Qanchillu	2n=3x=36	1.138	Abundante	0.106	Muchos hogares	
Yana Ñata	2n=4x=48	0.818	Abundante	13.117	Muchos hogares	
Cuchipa Akan	2n=3x=36	0.692	Abundante	0.145	Muchos hogares	
Wamanpa Uman	2n=4x=48	0.686	Abundante	23.406	Muchos hogares	
Amarilla	2n=2x=24	0.680	Abundante	0.072	Mayoría de hogares	
Yuraq Aqu Suytu	2n=3x=36	0.622	Abundante	0.263	Mayoría de hogares	
Jesucristopa Cuerpon	2n=2x=24	0.576	Abundante	0.151	Muchos hogares	
Sirina	2n=3x=36	0.503	Abundante	0.179	Muchos hogares	
Suytu Puqya	2n=2x=24	0.468	Abundante	0.190	Muchos hogares	
Muru Huayro	2n=3x=36	0.453	Abundante	0.151	Muchos hogares	
Uqi Palta	2n=4x=48	0.448	Abundante	0.061	Pocos hogares	
Puka Gaspar	2n=3x=36	0.393	Abundante	15,757	Muchos hogares	

LEAST ABUNDANT

Variedades	Ploidía	RCF Clasificación OCF		Clasificación		
Yana Huayro Machu	2n=4x=48	0.013	Escasa	0.010	Hogar endémico	
Yutupa Runtun	2n=4x=48	0.013	Escasa	0.060	Pocos hogares	
Suytu Caramelo	2n=3x=36	0.012	Escasa	0.040	Muy pocos hogares	
Murunquis	2n=4x=48	0.011	Escasa	0.020	Muy pocos hogares	
Puka Witkis	2n=4x=48	0.009	Muy escasa	0.030	Muy pocos hogares	
Yana Suytu Llumchuy Waqachi	2n=4x=48	0.009	Muy escasa	0.170	Muchos hogares	
Uqi Wacapa Qallun	2n=4x=48	0.008	Muy escasa	0.060	Pocos hogares	
Mashwa Papa	2n=4x=48	0.008	Muy escasa	0.017	Muy pocos hogares	
Allqa Culebra	2n=4x=48	0.007	Muy escasa	0.080	Pocos hogares	
Uqi Suytu	2n=2x=24	0.007	Muy escasa	0.006	Hogar endémico	
Yana Pasńa	2n=3x=36	0.006	Muy escasa	0.050	Pocos hogares	
Puka Ñawi Pasña	2n=2x=24	0.005	Muy escasa	0.011	Muy pocos hogares	
Aliqa ipillu	2n=4x=48	0.005	Muy escasa	0.022	Muy pocos hogares	
Puka Ñata	2n=4x=48	0.005	Muy escasa	0.070	Pocos hogares	
Puka Ñawi Ñata	2n=2x=24	0.005	Muy escasa	0.070	Pocos hogares	
Wacapa Rurun	2n=3x=36	0.005	Muy escasa	0.010	Hogar endémico	
Yuraq Ripran	2n=4x=48	0.005	Muy escasa	0.030	Muy pocos hogares	
Yuraq Aqu Suytu	2n=3x=36	0.005	Muy escasa	0.010	Hogar endémico	
Achanqayra	2n=4x=48	0.005	Muy escasa	0.022	Muy pocos hogares	
Challwa	2n=4x=48	0.004	Muy escasa	0.040	Muy pocos hogares	
Puka Saco Largo	2n=2x=24	0.004	Muy escasa	0.010	Muy pocos hogares	
Papa Sari	2n=4x=48	0.003	Muy escasa	0.020	Muy pocos hogares	
Yawar Manto	2n=2x=24	0.003	Muy escasa	0.010	Hogar endémico	
Kuchipa Chupan	2n=2x=24	0.003	Muy escasa	0.006	Hogar endémico	
Mishipa Makin	2n=4x=48	0.003	Muy escasa	0.006	Hogar endémico	
Puka Qala	2n=4x=48	0.003	Muy escasa	0.006	Hogar endémico	
Muru Wali	2n=4x=48	0.002	Muy escasa	0.006	Hogar endémico	
Llamapa Ñawin	2n=4x=48	0.001	Muy escasa	0.006	Hogar endémico	
Yan a Walash	2n=4x=48	0.001	Muy escasa	0.006	Hogar endémico	
Puka Cucharcas	2n=4x=48	0.000	Muy escasa	0.654	Muy pocos hogares	

Common

Rare

Very rare

Monitoring altitudinal shifts and landuse change

Floury landraces

Bitter landraces

Altitudinal distribution (1975–2013) in meter above sea level (H = Huancavelica, P = Pasco)

Arce et al., 2019

JUNIN

HUANCAVELICA

LA LIBERTAD

CH'IYÄRA SURIMANA

Parecido a la pluma del suri Ch'iyara Surimanita, Qaqa Surimana, Surimana Negro

Ch'iyära yugall surimana ghathi ch'ugi. Aka ch'ugin amucha panqarapax yaqha kasta saminiw. Janchi chuymapax janqʻu Kajkiri. Unt'ata khaysa chukaw marka qhathunakan.

DESCRIPCIÓN MORFOLÓGICA

Hábito de crecimiento de la planta Color del tallo Color primario de la flor Color secundario de la flor Distribución del color secundario de la flor Grado de floración Forma del tubérculo Color primario de la piel del tubérculo Color secundario de la piel del tubérculo Color primario de la pulpa del tubérculo Blanco Color secundario de la pulpa del tubérculo Ausente Color predominante del brote

Morado

Categoría varietal nativa muy harinosa. Variedad *qhini* (dulce), se cultiva desde hace

mucho tiempo y es destinada a consumo

como qhathi ch'uqi (papa cocida sin pelar).

consumo se acaba antes de 8 meses porque

se come diariamente. Es muy apreciada y

diferente a las demás variedades qhathi.

Yapuchirinakax sapxiw jiwa ch'iyära alini

ch'uqi, pata janchipax ch'iyāra sillp'ini,

pigmentación en el pistilo morado. Su

Especie: Solanum tuberosum L. (Grupo Stenotomum) Abundancia relativa: RCF: Común **OCF:** Muchos hogares

USOS CULINARIOS

Qhathi (papa cocida sin pelar), ideal para comer con pescado, jallpa wayk'a (ají molido) y queso. Waja (papa cocinada en terrones caldeados), ideal para corner con Phasa verde (arcilla comestible), horneada y frita. Tiempo de cocción: Rápido

CARACTERES AGRONÓMICOS

Rendimiento promedio Número promedio de tubérculos por planta Resistencia a tizón tardío Tolerancia a la helada Tiempo de almacenamiento Rango de adaptación Periodo vegetativo

0.67 kg por planta 21 Intermedia Intermedia 7 - 8 meses 3898 - 3906 msnm Semitardío

CATÁLOGO DE PAPAS BOLIVIA

APURIMAC

YAULI PAUCARA

Growing numbers of landrace baseline catalogues revealing distribution and conservation status

PAUCARTAMBO: 100-year timeline and landrace catalogue

Moving towards app-based observations using citizen science

 (\circ)

Ð

 \mathcal{Q}

VarScout Web and Mobile App

APP development for Potato Watchers

VarScout	× • VarSo
19:11	12:01 🖬 🗙 Add v
Login	Wurzbach
Email	Google
Password	Effort *
LOGIN Forgot password?	Household
Don't have an account? CREATE ACCOUNT	Or
	Grower nam
	Anonym
III 0 <	

The VarScout App

Select and add a variety

× Seleccione la varied ×	
Variedad	
Buscar en todos los campos Buscar en todos los campos	0
Variedad Seleccione el item	
Ajo Suytu	Buscar el nomb
Allqa Imilla	variedad. Se mu
Alles Isille	todas las caract
Sinónimos (otro nombre) Sinónimos (otro nombre)	la variedad
Especies Especies	
Características morfologicas	
FLOR TUBÉRCULO	
Color predominante de la flor Color predominante de la flor	

Add an observation

0

Se muestra el nombre de la variedad seleccionada o agregada

+ IMAGEN

Se puede tomar una o varias fotos. Agregar una etiqueta a la foto

Tipo de actividad*

Tipo de actividad* Encuesta

Histórico

Eventual

Ionitore

× 0

La ubicació se registra automatica Selecciona monitoreo

Agregar nombre de la nueva variedad, puede agregar caracteristicas de la variedad

ón
l.
amente
ar

Registrar datos del agricultor y guardar

First school contest in 2022

Premios* "Se premiará a los 3 primeros alumnos de cada colegio

1 Tablet Lenovo 10.1 Yoga Smart de 64G8

1 Tablet Lenovo Tab M7 (3ra Generación) Iron Grey

Consideraciones a tomar para la elección de los ganadores

Calidad de las fotos tomadas

Número de variedades subidas al aplicativo

Llenado correcto de los datos en el aplicativo

El objetivo es descubrir y revalorizar las variedades UNICAS de Paucartambo

CONTÁCTANOS:

- Michael Ombono Vásquez Gerente de la Municipalidad distrital Paucartambo 929 970 586 michafrank@hotmail.com
- Cesar López
 Agencia Agraria
 963529354
 cls788@hotmail.com
- Vilma Hualla Grupo de Soporte CIP 980654224 v.hualla@cgiar.org
- Raul Ccanto
 Grupo de Soporte Yanapai
 964496090
 raulccanto@yahoo.com.pe

1" CONCURSO

Descubriendo la biodiversidad de papas nativas de mi comunidad usando el aplicativo:

VarScout

21 • 22 Abril

/arScout

PARTICIPANTES: Alumnos de secundaria

Organización de las Naciones Unidas para la Alimentación y la Agricultura

Tratado Internacional sobre los Recursos Fitogenéticos para la Alimentación y la Agricultura

DESDE:

AL

...

AGOSTO

MAYO

descubre Y

comparte La

riqueza de **tu**

comunidad

INICIO NOSOTROS Q EXPLORA CATÁLOGO

SUMATE A LA CONSERVACIÓN

VARSCOUT

CONTACTO

11 Q EXPLORA CATÁLOGO NOSOTROS INICIO SUMATE A LA CONSERVACIÓN

VARSCOUT

CONTACTO

Milabra, Yuraq mauna, Papa

6 días atrás

YEDALI (15 YEARS): "I used the VarScout app to explore the different native potato varieties with the help of my mom and grandparents. Now I can do my bit to conserve them"

2. RECIPROCITY

What is a custodian farmer and why are they special?

The gap between policy and the reality on the ground

- Both article 9 of the ITPGRFA and UN Assembly declaration of the IDP 'recognize the enormous contribution of indigenous / Andean communities and farmers for the conservation and development of plant genetic resources which constitutes the basis of food security'.
- Article 9 on Farmers Rights specifically states:
 - Right to equitably participate in sharing benefits
 - Right to participate in making decisions
 - Right to manage farm-saved seed
- Yet, custodian farmers while living in marginal conditions are generally not able to articulate their needs, access benefits or propose incentive systems for agrobiodiversity conservation

So, what is AGUAPAN and how does it offer an innovative solution?

- Voluntary direct benefit sharing linking the Corporate Social Responsibility of potato companies to biodiversity conservation
- Self-determination and tangible options to implement farmers' rights
- Annual monetary bonus for each household: (i) no overhead, (ii) investment for inputs, health, education, (iii) funds managed by the custodians. One company = 50 families
- Since 2019 also a health fund and e-commerce scheme
- An **independent Support Group** that provides advice, supervision, control and mentoring
- Annual assemblies and custodian farmer encounters to generate exchanges between peers
- **Recognized model**: ITPGRFA, WIPO, IP Watch, World Food Prize
- Positive global visibility for companies participating

06 y 07

JULIO

2023

PODEROSA

NENCEPAL DAD DESTRITAL DE CHUGAY

Asociación Pataz

HUAMACHUCO LA LIBERTAD

AUDITÓRIUM DE RADIO LOS ANDES

inia,

INICIATIVA

RUPO YANAPA

ANCASH AYACUCHO CUZCO HUANCAVELICA HUÁNUCO JUNÍN LA LIBERTAD LIMA PASCO

Meet the Farmer Leaders (2022-2024 management)

2024 Aurea Mendoza Capcha 1st elected female president

What are some of the impacts after 11 years?

- Households with access to health, education and farming inputs
- Female and young leaders with enhanced capacity
- Thousands of unique landraces documented and conserved
- Indigenous farmers proud, aware, connected and considered

Día de la Papa 30 de mayo

¡Viva el día nacional de la papa nativa, viva AGUAPAN!

El Consejo Directivo 2020-2022 de AGUAPAN : Elmer Chávez (HUANCAVELICA), Aurea Mendoza (PASCO), Victoriano Fernández (HUÁNUCO) y Marcelo Tiza (JUNÍN).

AGUAPAN present at the International Day of Potato

#InternationalDayofPOTATO fao.org/international-potato-day International D Potato rong!

Sharing the delight of consuming CHAQRU mixtures with consumers

Other incentive systems promoted by AGUAPAN: heritage mixtures and markets

3. BACK-UP

Seed Security and Restoration Approaches with Climate Change

Sources: R. Landa et al., Cambio climático y desarrollo sustentable, 2010; ECLAC, Climate Change. A regional perspective, 2010.

Manua landrace tolerant to frost

Potato Tuber Seed Networks in the Andes with and without Stress

- •Networks more fragmented and contracted with localized stress
- •68% less provisión of seed
- •59% more adquisition of seed
- •11% reduction in the overall volume exchanged
- •Minimum number of connections needed from source to sink shortened (2.8 to 1.6)

Intensity of seed exchange depends on the cultivar group

1. Modern

2. Commercial floury landraces

4. Non-commercial floury landraces (culivar mixtures)

3. Non-commercial floury landraces (individual cultivars)

5. Bitter landraces

Repatriation from CIP genebank to communities

INCORPORATION: comparing 2 regions and 14 custodian farmers with the CIP global genebank

A, U.S. Navy, NGA, GEBC

Antioquia

Dpto	Comunidad	Agricultor	Codigo	# acc	Total
Lima	Caruya	ANCO CHIRINOS, Victor Jose	LimaAA	207	
	San Mateo	CARLOS CASTILLO, Edgar Alberto	LimaAB	107	121
	Huancachi	LERMO BELTRAN , Alberta Tabita	LimaAD	64	454
	Chocna	MICHUE RIVERA, Pedro Bernando	LimaAE	56	
Data LDEO-COlumbia, N					

Genetic diversity comparison based on DArTseq data

1075 landraces from **14** farmers compared to **4,130** genebank accession

41 unique accessions from Pasco

47 unique accessions from Sierra de Lima

88 accessions were added to the genebank collection

Integrated conservation is a win-win for farmers and genebanks

Model to be replicated for the other **7** AGUAPAN regions

4. COMPLEMENTARY KNOWLEDGE

FOODS OF THE FUTURE

Systematization with detailed information on 50 Andean cultivated and wild food species and ancestral food processing techniques Recipes from traditional cuisine and top chefs from Argentina, Bolivia, Peru, Ecuador, Colombia and Venezuela using native species and varietal diversity

50 recipes for culinary Innovation

Open Access Books on CGSPACE

https://hdl.handle.net/10568/117367

https://hdl.handle.net/10568/116608

BIBLIOGRAFIA BIBLIOGRAPHY

https://hdl.handle.net/10568/116283

Papa chaucha Solanum phureja

Carlos Ñústez López (Colombia), Universidad Nacional de Colombia (UNAL)

Como papa chaucha o simplemente "chaucha" se conoce a la especie Solanum phureja (Juz. and Bukasov) en Perú¹, Bolivia² y Ecuador³. En Colombia, el nombre frecuente es papa criolla⁴. Chaucha significa temprana o precoz en el idioma quechua⁵, mientras que la palabra phureja se deriva de la palabra phurexa del idioma aimara⁶ y significa también precoz². La papa chaucha incluye principalmente diploides, aunque en Bolivia con poca frecuencia se reportan autotetraploides y triploides²⁷. Se caracteriza por presentar heterogeneidad en el tamaño y forma de tubérculos, adaptación a días cortos, brotación en la cosecha^{8,9}, precocidad en el desarrollo de tubérculos y adaptación a los valles interandinos¹⁰. Se cosecha con follaje verde y su poscosecha para consumo fresco es muy corto. En Colombia es apreciada por sus excelentes características organolépticas y cada año se cultivan entre 8,000 y 10,000 hectáreas, en especial del tipo "yema de huevo" (tubérculo redondo y color amarillo en piel y carne). Hoy en día la papa chaucha es muy escasa en Ecuador, Perú y Bolivia, encontrándose casi extinta.

Distribución geográfica

5. phureja se distribuye ampliamente en los Andes desde el occidente de Venezuela, hasta el noroeste de 2,000 y 3,400 msnm. Estas zonas se caracterizan por el bajo riesgo de heladas²¹¹ y, también, por ser las zonas de mayor presencia de variedades modernas que han desplazado a las chauchas. En el Perú se solía encontrar desde el norte¹ hasta el sur¹⁴³, mientras

de La Paz¹⁰. En Ecuador las principales provincias donde se encuentra son: Carchi, Chimborazo y Loja". En Colombia, hay un importante centro de diversidad

Diversidad varietal

El banco de germoplasma del CIP mantiene 197 accesiones ex situ: 50.3% de origen de Colombia, 41.6% de Ecuador y 6.6% del Perú. En Bolivia, el banco del INIAF reporta hasta 10 variedades distintas^{16,20}, mientras en Ecuador se conservan hasta 140 accesiones en el banco de INIAP²⁷. En Colombia AGROSAVIA reporta 143 accesiones²². La Universidad Nacional de Colombia y AGROSAVIA también han registrado 13 y 2 variedades mejoradas respectivamente.Existe gran variabilidad de formas y colores de tubérculos, así como una rica nomenclatura local. Dado el alto nivel de amenaza sobre esta diversidad que está en manos de agricultores, urge mayor inversión, investigación y acción para la conservación in situ de la papa chaucha.

Origen

5. phurejo es de origen andino y fue seleccionada a partir de 5. stenotomum por ausencia de reposo en el tubérculo, precocidad y rendimientos adecuados. Esto permitió hasta tres cosechas por año en valles interandinos orientales¹⁰, ofreciendo ventajas en seguridad alimentaria de poblaciones originarias.

La clasificación taxonómica ampliamente usada para papa cultivada la reconoce como una de siete especies¹⁰. Basados en el estudio de caracteres morfológicos fue clasificada como Grupo Phureja dentro de Solanum tuberosumª y, basados en estudios genéticos y revisión de especimenes de herbario propusieron incluirla dentro de una sola clasificación como Solanum tuberosum Grupo Andigenum^{10,0}

Potencial economico

Debido a la falta de reposo, la opción para consolio en hojuelas, harina precocida para sopas, hojuelas opciones pueden obtenerse aprovechando su liversidad genética. Variedades ricas en carotenoio sopas y quesos¹⁵.

En Ecuador, Peru y Bolivia los mercados actualmente en conservación in situ, mejoramiento genético, idemás, realizar la adecuada divulgación y, de manera importante, lograr la inversión del sector empresarial privado con criterios de inclusión socia En Colombia, en la última década se ha consolidado la exportación de papa criolla "yema de huevo". En los últimos cinco años el mercado de exportación

Nutricion

La papa chaucha se destaca por su valor nutricional. Se reportan altos contenidos de proteínas entre 1.8 y 17.2% en base seca^{10,10,10}. Se ha afirmado que el valor nutricional de los aminoácidos libres en la papa chaucha es más alto que en otros grupos cultivados de papa". Se han reportado variedades con alto contenido de hierro y zinc. En estudio comparativo de 49 variedades de papa nativa, fue una papa chaucha la que mostró el mayor contenido de hierro¹⁰.

Tiene excelentes niveles de polifenoles, antocianinas y carotenoides⁴⁷. Se ha reportado hasta 6.5 veces más fibra cruda que en la papa blanca tetraploide de mayor consumo^u. El compuesto fenólico de mayor abundancia es el ácido clorogénico^a, que tiene funciones antidiabéticas⁴⁶ y anticancerígenas⁴⁶. Las antocianinas comunes en tubérculos púrpura son: malvidina, petunidina, delfinidina y peonidina y, en tubérculos rojos, la pelargonidina45. Se han reportado excelentes niveles de actividad antioxidante^{27,43,47,48}. Asimismo, variedades con alto contenido de carotenoides: luteina, zeaxantina, violaxantina, antheraxantina y b-caroteno^{27404/4148/40505050331}

Atributos nutricionales (por 100 g peso seco)1.37.40,45.43,45.45.45.54

Hierro (mg)	Zinc (mg)	Vitamina C (mg)	Fenoles totales (mg de AG*)	Antocianinas (mg)	Ácido clorogénico (mg)	Carotenoides (mg)
1.3-6.5	0.9-5.8	4.7-10.0	217.9-524.8	0.4-4.1	51-2940	0.6-13.3
1.3-0.5	0.9-5.8	4,7-10.0	217.9-524.8	0.4-4.1	51-2940	0.8-

* = acido gálico

Gastronomía

La papa chaucha es de agradable sabor, textura y de fácil preparación^{se}. En Colombia, donde existe un importante consumo, es utilizada en sopas, cremas, puré y frita. En el ajjaco santafereño (plato muy importante de la gastronomía colombiana), la papa criolla es la más importante de los tres tipos de papas que se incluyen. Los tubérculos pequeños enteros hervidos o fritos, se utilizan para aperitivos en cócteles, acompañados de diversos tipos de salsas. En puré se utiliza como base para las mezclas con carnes u otro ingrediente para hacer deliciosas empanadas.

Resiliencia climática y adaptación

Existen múltiples reportes de resistencia a enfermedades que indican claramente el alto potencial de adaptación de la papa chaucha frente a presiones de estrés biótico o abiótico. Estas características tienen potencial para el mejoramiento genético. Incluye resistencia a la rancha o tizón tardío (Phytophthoro infestons)#20,21,24,25,26,27,28, marchitez bacteriana (Ralstonia solanacearum)29,30, sarna polvosa (Spongospora subterránea)^{31,33} y a virus como PVY33 y PYVV34. También tolerancia al daño por la polilla (Tecio solanivora)²⁸, a bajas temperaturas o calor²³⁴ y a estrés por seguía³⁰.

Edelisa Olvea

Puno, Perú

Valor nutricional del chuño negro y blanco

Economic Botany 64(3):217-234

Education, youth and potato genetic resources

Guía para la formulación de aprendizajes basados en proyectos

Experiencia educativa "Las papitas de mi comunidad"

Provide evidence and support for public procurement programs

Nota de prensa

Los estudiantes recibirán este tubérculo andino como parte de la tercera, cuarta y sétima entrega.

Agrobiodiversity and Public Food Procurement Programs in Brazil: Influence of Local Stakeholders in Configuring **Green Mediated Markets**

by Antonio Gabriel L. Resque ^{1,*} , Emilie Coudel ², Marie-Gabrielle Piketty ³, Nathalie Cialdella⁴, Tatiana Sá⁵, Marc Piraux⁶, William Assis⁷, and Christophe Le Page 8 💿

- Paragominas, Brazil

Programa Nacional de Alimentación Escolar Qali Warma Junín: Qali Warma distribuye papa nativa para complementar nutritivos desayunos y almuerzos escolares

¹ Universidade Federal Rural da Amazônia, Campus de Paragominas, 68625-000

² UPR Green-Cirad, Centro de Desenvolvimento Sustentável, Universidade Nacional de Brasilia, Campus Darcy Ribeiro, 70910-900 Brasilia, Brazil

³ UPR Green-Cirad, Pontifica Universidad Javeriana, a 4-38, Cl. 42 #42 Bogota, Colombia

⁴ UMR Innovation-Cirad, Embrapa Amazônia Oriental, 66095-903 Belém, Brazil

⁵ UMR Tetis-Cirad, Embrapa Amazônia Oriental, 66095-903 Belém, Brazil

⁶ Embrapa Amazônia Oriental, 66095-903 Belém, Brazil

7 Institute Americando Agricultures Femilieros (INEAE), Universidado Federal de Deré

Genebanks 2

- Africa Rice Cote d'Ivoire
- IITA Nigeria
- Bioversity International / **CIAT** Belgium
- CIMMYT Mexico
- ICARDA Morocco and Lebanon
- Bioversity International / **CIAT** Colombia
- ICRISAT India
- CIP Peru
- **IRRI** Philippines

Centers of origin and diversity

- (1) Mexico-Guatemala
- (2) Peru-Ecuador-Bolivia
- (2A) South of Chile
- (2B) Paraguay-South of Brasil
- (3) Mediterranean
- (4) Middle East

- (5) Ethiopia
- (6) Central Asia
- (7) Indo-Burmese
- (7A) Siam-Malay-Java
- (8) China and Korea

FUTURE VISION: Network of networks for integrated conservation across centers of origin, in-situ communities, CG centers and national genebanks systems

Thank you for your Attention!

$\bullet A N D E A N \bullet$ INITIATIVE

Stef de Haan International Potato Center (CIP), Peru s.dehaan@cgiar.org +51941890615

A team effort with support from:

- Many CIP colleagues
- Andean Initiative
- Grupo Yanapai
- AGUAPAN
- SPDA, Asociacion Pataz
- HZPC, AGRICO and EUROPLANT
- INIA, AGROSAVIA, PROSUCO, UaCh
- GIZ German Cooperation
- University of Birmingham
- Wageningen University and Research
- Scuola Superiore Sant'Anna
- The McKnight Foundation
- Embassy of New Zealand