

GLOBAL CROP CONSERVATION AND USE METRICS

# AMARANTH

*(Amaranthus L.)*



Cover photo: Michael Major for Crop Trust

Crop Trust  
Platz der Vereinten Nationen 7  
53113 Bonn, Germany

General Contact  
+49 (0) 228 85427 118  
info@croptrust.org

**Copyright**

© 2025 Global Crop Diversity Trust.

**Permission to Use**

This publication may be reproduced in whole or in part, and in any form, for educational or non-profit purposes without special permission from the copyright holder, provided that the source is acknowledged.

No use of this publication may be made for resale or for any other commercial purpose without prior written permission from the Global Crop Diversity Trust. Requests for permission for commercial use, stating the purpose and extent of the reproduction, should be addressed to: publications@croptrust.org

Except as otherwise expressly indicated, all text and tabular content contained in this document are licensed under the [Creative Commons Attribution-NonCommercial-ShareAlike \(CC BY-NC-SA\) license](#). All images and photographs are explicitly excluded from this license and may not be copied, reproduced, distributed, or otherwise used without the prior written consent of the Crop Trust.

**Suggested Citation**

Khoury CK, Gora, S and Giovannini, P (2025) Global crop conservation and use metrics: Amaranth (*Amaranthus* L.). Bonn, Germany: Global Crop Diversity Trust.

**Funding Source**

The development of this document was funded by the German Federal Ministry of Agriculture, Food and Regional Identity (BMELH) as part of the project *Mainstreaming Global Crop Conservation Strategies in Plant Treaty Processes* led by the Crop Trust.

## Global crop conservation and use metrics

# AMARANTH

*(Amaranthus L.)*



International Treaty  
on Plant Genetic Resources  
for Food and Agriculture

With support from



Federal Ministry  
of Agriculture, Food  
and Regional Identity

## Description

This report provides an up-to-date overview of the global status of *ex situ* conservation of genetic resources of amaranth and its wild relatives, including key metrics on:

- global statistics on crop production and availability in food supplies;
- the identity and composition of genebank collections;

- the Multilateral System (MLS) status of accessions in these collections;
- storage, regeneration, and safety duplication status;
- documentation, information systems, and research resources;
- germplasm distribution;
- varietal registrations and releases; and
- crop networks and partnerships

## Introduction and background on amaranth

Amaranth (*Amaranthus* L.) crops were in cultivation at least 6,000-8,000 years ago in South and Central America, eventually becoming staple foods for civilizations such as the Aztecs, Mayas, and Incas (Brenner *et al.*, 2020; Priyadarsini *et al.*, 2025). Traditional use of the plants in religious ceremonies led to banning of its cultivation by Spanish conquistadors in the 16th century, but the food persisted and spread to other continents both as a grain and a leaf vegetable, and has experienced a further revival in the past half century (Sauer, 1967; Baraniak and Kania-DOBrowolska, 2022). The genus contains three main species cultivated for their “grains” (being in the Amaranthaceae, they are considered pseudocereals rather than true cereals of the grass family): *Amaranthus cruentus* L. and *Amaranthus hypochondriacus* L. (native to Mesoamerica), and *Amaranthus caudatus* L. (kiwicha, native to the South American Andes). These are now cultivated across many

tropical, subtropical, and warm temperate regions worldwide (Sarker *et al.*, 2020; USDA, 2025; WFO, 2025). As a vegetable, the genus contains at least 17 species cultivated for their highly nutritious edible leaves. Several amaranth species are also valued for their ornamental characteristics or for animal feed, while many are invasive weeds (Priyadarsini *et al.*, 2025). Amaranth crops are remarkably resilient, having C4 photosynthesis and able to grow in poor soils and challenging climatic conditions (Priyadarsini *et al.*, 2025).

Global cultivation and consumption statistics are rather limited for amaranth, with FAOSTAT placing the crop within generalized categories both in production metrics (“Cereals, nes”) and food supply metrics (“Cereals, Other”) and not providing information on its use as a vegetable; estimates derived from these statistics are reported in Table 1.

**Table 1.** Global status of amaranth production, availability in food supplies, and public interest. Production and food supply statistics from FAOSTAT (2015 to 2018 average). The crop is placed within generalized categories both in production metrics ("Cereals, nes") and food supply metrics ("Cereals, Other"). For production, the value for "Cereals, nes" was divided evenly among crops within the general category to estimate a production value. For food supply, the value for "Cereals, Other" was divided among crops within the general category using a weighted average based on crop production statistics (Khoury *et al.*, 2023). Number of countries refers to the count of countries where the crop is reported as within the top 95 percent of crops in terms of contribution to production or food supply. The evenness metric quantifies evenness of production or availability in food supplies across world regions, where 0 equals highly uneven and 1 equals completely even. The international interdependence metric quantifies the degree of production or availability in food supplies outside of the primary region of diversity of the crop, where 0 equals low estimated international interdependence and 1 equals high estimated international interdependence. Wikipedia metric is public pageviews over one year (2019) of the taxon name of the crop. All values from Khoury *et al.* (2023).

| Metric                                                      | Global value | Number of countries where significant contributor | Evenness of contribution across world regions | Estimated international interdependence |
|-------------------------------------------------------------|--------------|---------------------------------------------------|-----------------------------------------------|-----------------------------------------|
| Harvested area (ha)                                         | 247,151      | 1.75                                              | 0.14                                          | 1.00                                    |
| Total production (tonnes)                                   | 407,690      | 2.00                                              | 0.14                                          | 1.00                                    |
| Gross production value (current thousand USD)               | 105,242      | 1.50                                              | 0.11                                          | 0.99                                    |
| Contribution to calories in food supplies (kcal/capita/day) | 0.50         | 3.00                                              | 0.32                                          | 1.00                                    |
| Contribution to protein in food supplies (g/capita/day)     | 0.01         | 4.25                                              | 0.32                                          | 0.99                                    |
| Contribution to fat in food supplies (g/capita/day)         | 0.00         | 0.75                                              | 0.33                                          | 0.97                                    |
| Contribution to food weight in food supplies (g/capita/day) | 0.05         | 1.25                                              | 0.29                                          | 1.00                                    |
| Number of public pageviews on Wikipedia over one year       | 150,787      |                                                   |                                               |                                         |

## Identity and composition of *ex situ* collections

Based on the latest data in global genetic resource databases, germplasm collections of amaranths and their wild relatives (i.e., genus *Amaranthus* L.) are present in at least 118 institutions worldwide, collectively maintaining 25,838 accessions (Table 2, Table 3; Supplementary Table 1). The institutions include large collections in the Americas, Asia, Europe, and Africa. The World Vegetable Center maintains a large international collection for the crop (with a focus on its use as a leaf vegetable), with the International Center for Biosaline Agriculture and Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) also maintaining international collections. The largest national collections are in India (with 24.3% of total accessions worldwide), USA (12.9%), and Brazil (9.7%), as well as Benin, Mexico, Bangladesh, Hungary, Peru, Japan, and Ecuador; these

international and large national collections collectively maintain over three-quarters of documented accessions worldwide.

The number of amaranth accessions represented in global databases is somewhat more than the number of accessions reported for the crop (23,433) in the major germplasm collections listed in *The Third Report on the State of the World's Plant Genetic Resources for Food and Agriculture* (FAO, 2025b). This said, the collections listed in online databases are not representative of all amaranth collections globally. For example, the collections of the Centro de Investigación de Cultivos Andinos at the Universidad Nacional de San Antonio Abad del Cusco, Peru, is known to maintain over 1,500 accessions of *A. caudatus* and is not currently reported.

**Table 2.** Major *ex situ* collections of amaranth genetic resources. Top 20 institutions listed in descending order by total number of accessions. Number of accessions and storage condition information from Genesys and FAO WIEWS (2025), with supplementary information as noted. Multilateral System (MLS) status from Plant Treaty GLIS (2025) and from Genesys and FAO WIEWS (2025).

| Institution Code | Institution name                                                                                          | Number of accessions | Percent of total | Cumulative percent | Number of accessions in long term storage (-18-20 C) | Number of accessions included in MLS (from Plant Treaty GLIS) | Number of accessions included in MLS (from genebank collections databases) |
|------------------|-----------------------------------------------------------------------------------------------------------|----------------------|------------------|--------------------|------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|
| IND001           | National Bureau of Plant Genetic Resources                                                                | 6,277                | 24.3%            | 24.3%              | 6,277                                                | 0                                                             | 0                                                                          |
| USA020           | North Central Regional Plant Introduction Station, USDA-ARS, NCRPIS                                       | 3,341                | 12.9%            | 37.2%              | 3,156                                                | 0                                                             | 0                                                                          |
| BRA003           | Embrapa Recursos Genéticos e Biotecnologia                                                                | 2,496                | 9.7%             | 46.9%              | Not listed                                           | 0                                                             | 0                                                                          |
| TWN001           | World Vegetable Center                                                                                    | 1,432                | 5.5%             | 52.4%              | 1,325                                                | 536                                                           | 1,083                                                                      |
| BEN097           | Unité de Génétique, Biotechnologie et Science des Semences                                                | 1,220                | 4.7%             | 57.1%              | Not listed                                           | 1,220                                                         | 0                                                                          |
| MEX208           | INIFAP, Centro Nacional de Recursos Genéticos (CNRG)                                                      | 893                  | 3.5%             | 60.6%              | 893                                                  | 0                                                             | 0                                                                          |
| BGD003           | Bangladesh Agricultural Research Institute                                                                | 794                  | 3.1%             | 63.7%              | 779                                                  | 0                                                             | 50                                                                         |
| HUN003           | Centre for Plant Diversity                                                                                | 787                  | 3.0%             | 66.7%              | 21                                                   | 0                                                             | 5                                                                          |
| PER012           | Estación Experimental Agraria Baños del Inca                                                              | 685                  | 2.6%             | 69.4%              | Not listed                                           | 0                                                             | 0                                                                          |
| JPN183           | NARO Genebank                                                                                             | 680                  | 2.6%             | 72.0%              | 261                                                  | 0                                                             | 0                                                                          |
| ECU023           | Departamento Nacional de Recursos Fitogenéticos                                                           | 589                  | 2.3%             | 74.3%              | 523                                                  | 0                                                             | 0                                                                          |
| MEX194           | Instituto de Investigación y Capacitación Agropecuaria, Acuícola y Forestal del Estado de México (ICAMEX) | 430                  | 1.7%             | 76.0%              | Not listed                                           | 0                                                             | 0                                                                          |
| ARE003           | International Center for Biosaline Agriculture                                                            | 415                  | 1.6%             | 77.6%              | Not listed                                           | 416                                                           | 415                                                                        |
| MEX006           | UACH, Banco Nacional de Germoplasma Vegetal (BANGEV)                                                      | 412                  | 1.6%             | 79.2%              | 191                                                  | 0                                                             | 0                                                                          |
| CRI001           | Centro Agronómico Tropical de Investigación y Enseñanza (CATIE)                                           | 265                  | 1.0%             | 80.2%              | 265                                                  | 265                                                           | 265                                                                        |
| ZMB048           | National Plant Genetic Resources Centre                                                                   | 260                  | 1.0%             | 81.2%              | 260                                                  | 7                                                             | 0                                                                          |
| VNM049           | Plant Resources Center                                                                                    | 258                  | 1.0%             | 82.2%              | Not listed                                           | 0                                                             | 0                                                                          |

|        |                                                        |       |       |        |            |     |     |
|--------|--------------------------------------------------------|-------|-------|--------|------------|-----|-----|
| GBR004 | Millennium Seed Bank - Royal Botanic Gardens Kew       | 243   | 0.9%  | 83.1%  | Not listed | 0   | 0   |
| NPL069 | National Agriculture Genetic Resources Centre-Genebank | 218   | 0.8%  | 84.0%  | 218        | 0   | 0   |
| BOL317 | Estación Experimental de Toralapa                      | 216   | 0.8%  | 84.8%  | Not listed | 0   | 0   |
|        | Other institutions (n = 98)                            | 3,927 | 15.2% | 100.0% | 1,744      | 580 | 787 |

The International Board for Plant Genetic Resources (IBPGR)/International Plant Genetic Resources Institute (IPGRI) Register of Base Collections, which included collections that had formed (or had been proposed for) agreements with the international institutions based on long-term conservation of crop genepools on global or regional bases during the 1970s through 1990s (IBPGR/IPGRI, 1993; Thormann et al., 2019), listed, for amaranth:

- National Bureau of Plant Genetic Resources (NBPGR) (India) – regional collection for Asia (agreement dated 1981)
- USDA National Plant Germplasm System (NPGS) (USA) – global collection (agreement dated 1980)

Based on the number of current accessions (Table 2), it appears that these recognized collections continue to maintain diverse amaranth germplasm.

The genus *Amaranthus* L. (Amaranthaceae) contains around 50 species native to all continents, in both temperate and tropical regions; many inhabit open and disturbed areas and have the capacity to be weeds (USDA, 2025b; WFO, 2025). A published gene pool concept is available for red grain amaranth (*Amaranthus cruentus* L.) (USDA, 2025b). The concept considers *Amaranthus hybridus* L. the putative progenitor; this species is native to the Americas, from Canada south to Bolivia, and including the Caribbean Islands.

The secondary gene pool contains three taxa: *Amaranthus powellii* S. Watson, *Amaranthus retroflexus* L., *Amaranthus wrightii* S. Watson

The tertiary gene pool contains five taxa: *Amaranthus acutifolius* Uline & W. L. Bray, *Amaranthus dubius* Mart. ex Thell., *Amaranthus hybridus* L., *Amaranthus palmeri* S. Watson, *Amaranthus quitensis* Kunth

Data compilation for this report on amaranth genetic resources included all taxa in *Amaranthus*. Approximately 65 taxonomic names are present in germplasm collections, including the crop species as well as hybrids and accessions only determined at the genus level (Supplementary Table 2).

Landraces make up the largest proportion of known collections (34%), followed by improved varieties (9.2%), wild relatives (5.6%), and breeding materials (3.4%) (Table 3); these percentages are estimates based on available data, noting that 46.5% of accessions do not have biological status data. Amaranth germplasm has been collected from at least 117 countries, with at least 15.6% of accessions originating from the primary region of diversity of the crops (i.e. Mesoamerica and Andean South America, East Africa, and East and South Asia); these statistics are also estimates, as over 10% of amaranth landrace accessions and a similar proportion of wild relative accessions do not contain information even of the country where the accession was collected. Information on botanic garden collections from BGCI PlantSearch indicate that 139 botanic gardens collectively conserve 62 *Amaranthus* taxa; comparing these to genebank collections, seven are present only in botanic gardens.

**Table 3.** Composition of *ex situ* collections of amaranth genetic resources. Main *ex situ* collections data from Genesys and FAO WIEWS (2025). Primary and secondary regions information from Khoury *et al.* (2023) and subsequent research for this summary. Botanic gardens data from BGCI PlantSearch (2025).

| Metric                                                                               | Number | Percentage |
|--------------------------------------------------------------------------------------|--------|------------|
| Total number of accessions in genebank collections                                   | 25,838 |            |
| Number of institutions holding genebank collections                                  | 118    |            |
| Number of distinct taxonomic names in genebank collections                           | 65     |            |
| Number of accessions of crop wild relatives (CWR) in genebank collections            | 1,444  | 5.6%       |
| Number of accessions of weedy materials in genebank collections                      | 236    | 0.9%       |
| Number of accessions of landraces in genebank collections                            | 8,785  | 34.0%      |
| Number of accessions of breeding materials in genebank collections                   | 871    | 3.4%       |
| Number of accessions of improved varieties in genebank collections                   | 2,382  | 9.2%       |
| Number of accessions of other materials in genebank collections                      | 103    | 0.4%       |
| Number of accessions not marked with an improvement type in genebank collections     | 12,017 | 46.5%      |
| Number of countries where germplasm has been collected for genebank collections      | 117    |            |
| Number of accessions in genebank collections from the primary region(s) of diversity | 4,022  | 15.6%      |
| Number of taxa in botanic garden collections                                         | 62     |            |
| Number of botanic gardens holding collections of crop or its wild relatives          | 139    |            |

## Multilateral System status of accessions in *ex situ* collections

The genus *Amaranthus* is not listed in Annex I of the International Treaty on Plant Genetic Resources for Food and Agriculture (Plant Treaty) and is thus not included in its Multilateral System of Access and Benefit Sharing (MLS). This said, institutions can voluntarily place their collections under the MLS. Of the 25,838 accessions conserved globally, approximately 8.8% are held in international institutions (mainly the World Vegetable Center), 7% of which are listed as included in the MLS of the Plant Treaty, with the remainder maintained in national and other collections (Table 4).

As of 2025, 3,024 accessions are formally included in the MLS according to the Plant Treaty's GLIS database, and 4,492 accessions have been assigned Digital Object Identifiers (DOIs). Per the relevant fields in the global genetic resources databases, 2,605 accessions (10.1% of world total) are listed as included in the MLS; this is likely to be an underestimate, noting that 75.2% of accessions do not have MLS status data.

**Table 4.** Representation of amaranth accessions in international and national institutions, number of accessions with DOIs, and representation of accessions in the Multilateral System of Access and Benefit Sharing of the International Treaty on Plant Genetic Resources for Food and Agriculture. Main *ex situ* collections data from Genesys and FAO WIEWS (2025). DOI and MLS data from Plant Treaty GLIS (2025).

| Metric                                                                                                                                | Number | Percentage |
|---------------------------------------------------------------------------------------------------------------------------------------|--------|------------|
| Number of accessions in genebank collections in international institutions                                                            | 2,282  | 8.8%       |
| Number of accessions in genebank collections in national or other institutions                                                        | 23,941 | 92.7%      |
| Number of accessions in genebank collections in Annex I                                                                               | 0      | 0%         |
| Number of accessions with DOI (Plant Treaty GLIS 2025)                                                                                | 4,492  |            |
| Number of accessions included in the Multilateral System (MLS) (Plant Treaty GLIS 2025)                                               | 3,024  |            |
| Number of accessions included in the Multilateral System (MLS) (genebank collections databases)                                       | 2,605  | 10.1%      |
| Number of accessions included in the Multilateral System (MLS) that are in international collections (genebank collections databases) | 1,813  | 7.0%       |
| Number of accessions not included in the Multilateral System (MLS) (genebank collections databases)                                   | 3,801  | 14.7%      |
| Number of accessions without information regarding inclusion in the Multilateral System (MLS) (genebank collections databases)        | 19,432 | 75.2%      |

## Storage conditions, regeneration status, and safety duplication

As expected for an orthodox seed crop, the great majority (at least 83.4%) of *Amaranthus* accessions are conserved as seed, with 73.8% of these accessions listed as conserved under long-term cold-storage conditions (Table 5). Information on storage in general is missing for 15.8% of all accessions, and information on seed storage type (i.e., long, medium, or short term) is missing for 3.7% of seed accessions.

Current regeneration status and needs cannot be directly derived from the global germplasm databases. FAO WIEWS reporting for the *Third State of the World's Plant Genetic Resources for Food and Agriculture* (FAO, 2025b) for the years 2014 to 2019, documented 1279 amaranth accessions regenerated during this time by reporting institutions, with 1,315 accessions identified as needing regeneration and 1204 of these lacking funds to conduct the regeneration.

Analysis of the location of safety duplication sites of amaranth germplasm, as listed in Genesys, indicates that at least 10% are safety duplicated in an active collection (i.e., apart from potentially being duplicated at the Svalbard Global Seed Vault [SGSV] outside of the country of the main collection (Table 5). The actual extent of safety duplication of amaranth accessions worldwide, when also considering safety duplication within the same country, may be higher than this estimate, given that some national genebanks, such as the USA, typically safety backup their collections in a different location within the country. Information from the SGSV database from 2025 indicates that approximately 15.3% of total accessions worldwide are duplicated in Svalbard.

**Table 5.** Storage conditions of amaranth *ex situ* collections, regeneration status, and safety duplication status. Main *ex situ* collections data from Genesys and FAO WIEWS (2025). Regeneration status information from FAO WIEWS (2025); data from 2012 to 2014. Safety duplication out of the country data based only on Genesys (2025) data. Svalbard Global Seed Vault data from SGSV portal (2025).

| Metric                                                                                                         | Number | Percentage |
|----------------------------------------------------------------------------------------------------------------|--------|------------|
| Number of accessions held in seed storage in genebank collections                                              | 21,559 | 83.4%      |
| Number of accessions held in short-term seed storage in genebank collections                                   | 10     | 0.0%       |
| Number of accessions held in medium-term seed storage in genebank collections                                  | 4,834  | 22.4%      |
| Number of accessions held in long-term seed storage in genebank collections                                    | 15,913 | 73.8%      |
| Number of accessions held in seed storage of undefined type in genebank collections                            | 802    | 3.7%       |
| Number of accessions held in field storage in genebank collections                                             | 729    | 2.8%       |
| Number of accessions held in in-vitro storage in genebank collections                                          | 1      | 0.0%       |
| Number of accessions held in cryo storage in genebank collections                                              | 5      | 0.0%       |
| Number of accessions held as DNA in genebank collections                                                       | 1      | 0.0%       |
| Number of accessions held in other storage in genebank collections                                             | 0      | 0.0%       |
| Number of accessions not marked with a storage type in genebank collections                                    | 4,079  | 15.8%      |
| Number of accessions in genebank collections regenerated 2014-2019                                             | 1,279  | 36.5%      |
| Number of accessions in genebank collections in need of regeneration 2014-2019                                 | 1,315  | 37.5%      |
| Number of accessions in genebank collections in need of regeneration without budget for regeneration 2014-2019 | 1,204  | 34.4%      |
| Number of accessions safety duplicated out of the country in genebank collections                              | 919    | 10.0%      |
| Number of accessions in genebank collections safety duplicated in Svalbard                                     | 3,942  | 15.3%      |

## Documentation, information systems, and research resources

The World Vegetable Center published a descriptor in 2015 (WorldVeg, 2015). A characterized core collection for amaranth has also been established at the World Vegetable Center (Schafleitner *et al.*, 2022). Several national collections use descriptors for amaranth, such as India (see Pandey *et al.*, 2015) and the USA (USDA, 2025a).

The estimated completeness of passport information for amaranth accessions listed in Genesys is 5.5 on a scale of 0 (no data) to 10 (complete data), which indicates that there are significant gaps that it would be valuable

to fill. At least six amaranth characterization and evaluation datasets are available via Genesys, covering a total of 1,254 accessions. Four metrics of the current degree of digital sequence information (DSI) for amaranth (from the National Center for Biotechnology Information USA database), two metrics of published literature on the crop (Google Scholar and PubMed Central), and one metric of the degree of research resources such as herbarium specimens (from the Global Biodiversity Information Facility - GBIF), are listed in Table 6.

**Table 6.** Documentation, information systems, and research resources for amaranth. Passport data completeness index (PDCI) from Genesys (2025), based on the methods outlined in van Hintum *et al.* (2011). Global Biodiversity Information Facility data from GBIF (2025). All other metrics data from Khoury *et al.* (2023).

| Metric                                                                                                    | Number  |
|-----------------------------------------------------------------------------------------------------------|---------|
| Passport data completeness index (range 0-10) as a median value across accessions in genebank collections | 5.5     |
| Number of genes as recorded in NCBI's Entrez database as of 2022                                          | 243     |
| Number of genomes as recorded in NCBI's Entrez database as of 2022                                        | 3       |
| Number of nucleotides as recorded in NCBI's Entrez database as of 2022                                    | 239,810 |
| Number of proteins as recorded in NCBI's Entrez database as of 2022                                       | 1,893   |
| Number of publications listed in Google Scholar with taxon name in title published between 2009 and 2019  | 347     |
| Number of publications listed in PubMed Central with taxon name in text as of 2022                        | 2,662   |
| Number of research materials as recorded in GBIF (2025)                                                   | 492,647 |

## Germplasm distributions and varietal registrations and releases

Germplasm distribution and varietal development statistics for amaranth are listed in Table 7. Germplasm distribution data from FAO WIEWS and the Plant Treaty Data Store reflect different reporting scopes: FAO WIEWS primarily reports distributions from national genebanks, while the Plant Treaty Data Store includes all transfers made under the SMTA, encompassing distributions made by genebanks as well as by breeding programs and other organizational types (Khoury *et al.*, 2025). Distributions as reported in the FAO WIEWS dataset were made from institutions in 16 countries, with the largest numbers of samples distributed from institutions in Nigeria, India, Nepal, Bangladesh, and Mexico, and were primarily to within-country national agricultural research centers and to farmers or non-governmental organizations

(NGOs) (Khoury *et al.*, 2025). In the Plant Treaty dataset, the providers of the most samples were located in China and Tanzania, and the recipients of the most samples were located in Malaysia, China, Tanzania, Kenya, and Papua New Guinea. The differences in numbers of samples distributed as recorded by FAO WIEWS versus the Plant Treaty Data Store is likely a reflection of the lack of inclusion of the crops in Annex 1 of the Plant Treaty (Khoury *et al.*, 2023).

In addition to these distribution statistics, since 2013 the World Vegetable Center has distributed many amaranth samples to farmers, mainly in East Africa, through seed kits (Stoilova *et al.*, 2019).

**Table 7.** Amaranth germplasm distributions and varietal registrations and releases. FAO WIEWS distributions data is annual average over years 2014 to 2019. Plant Treaty Data Store distributions data is annual average over years 2015 to 2021. Evenness metric quantifies evenness of germplasm distributions across world regions, where 0 equals highly uneven and 1 equals completely even. International Union for the Protection of New Varieties of Plants (UPOV) PLUTO data is annual average over years 2014 to 2018. FAO WIEWS varietal releases data is annual average over years 2015 to 2019. All metrics data from Khoury *et al.* (2023), with Plant Treaty Data Store additions for more recent years (2019 to 2021).

| Metric                                                                                            | Number |
|---------------------------------------------------------------------------------------------------|--------|
| Average annual number of accessions distributed worldwide as recorded in FAO WIEWS                | 514.4  |
| Average annual number of samples distributed worldwide as recorded in FAO WIEWS                   | 932.2  |
| Average annual number of samples distributed worldwide as recorded in the Plant Treaty Data Store | 217.6  |
| Number of countries receiving germplasm as recorded in the Plant Treaty Data Store                | 5.3    |
| Evenness of distributions across world regions as recorded in the Plant Treaty Data Store         | 0.7    |
| Average annual number of varietal registrations worldwide as recorded in UPOV's PLUTO             | 2.5    |
| Average annual number of varietal releases worldwide as recorded in FAO WIEWS                     | 2.5    |

## Networks and partnerships

Currently active networks focused on the crop include:

- The [Asia and Pacific Seed Association \(APSA\)](#)-[World Vegetable Center \(WorldVeg\)](#)-[Vegetable Breeding Consortium](#)
- The Africa Vegetable Breeding Consortium ([AVBC](#))
- The [African Orphan Crops Consortium](#)

- The [African Vegetable Biodiversity Rescue Plan](#)
- The Vision for Adapted Crops and Soils ([VACS](#))
- The USDA ARS New Crops Germplasm Committee (also [here](#))
- Communities related to amaranth genetics and genomics, e.g. <https://amaranthgdb.org/>, Gonçalves-Dias and Setter (2021), and Singh *et al.* (2023).



## Conclusions

Amaranth is an important grain and vegetable crop in many world regions, and may become more important in future food systems for both human nutrition and sustainable agriculture needs. Amaranth genetic resources are bolstered by the activities taking place in collections in national and subnational agricultural research organizations as well as at the World Vegetable Center and several other international institutions. Available data indicates that these collections, in combination, are diverse and extensive, although they do not represent the full range of crop varieties as well as species and populations of wild relatives that could be conserved *ex situ* and made available for use. Lack of inclusion of the crop in Annex 1 of the Plant Treaty constrains international access to germplasm, with only around 10.1% of total accessions worldwide currently included in the MLS. There are considerable amounts of associated research resources, and there has been significant activity in germplasm distributions for the crop. Further efforts are required to: identify/determine taxa within current *ex situ* accessions; regenerate accessions in need; fully secure these accessions in long-term seed storage conditions and, especially, safety backup all unique accessions, including at the SGSV; and provide more complete accession-level passport information as well as generate further characterization and evaluation datasets.



## Methods and materials

Primary data sources for the metrics reported in this summary include: [Genesys](#); World Information and Early Warning System on Plant Genetic Resources for Food and Agriculture of the Food and Agriculture Organization of the United Nations ([FAO WIEWS](#)); Botanic Gardens Conservation International Plant-Search database ([BGCI PlantSearch](#)); Global Information System of the International Treaty on Plant Genetic Resources for Food and Agriculture ([Plant Treaty GLIS](#)); Data Store of the International Treaty on Plant Genetic Resources for Food and Agriculture ([Plant Treaty Data Store](#)); Svalbard Global Seed

Vault portal ([SGSV portal](#)); International Union for the Protection of New Varieties of Plants (UPOV) [PLUTO database](#); FAOSTAT; National Center for Biotechnology Information's Entrez database ([NCBI Entrez](#)); [Google Scholar](#); [PubMed Central](#); [Wikipedia](#); and the Global Biodiversity Information Facility ([GBIF](#)). Some of these data were acquired from literature/databases including [Khoury et al. \(2023\)](#) and [Khoury et al. \(2025\)](#). Data processing, metric calculation, and table generation were conducted in R, with code available on this [GitLab repository](#). Extended methods are available [here](#).

## Acknowledgements

The development of this document was funded by the German Federal Ministry of Agriculture, Food and Regional Identity (BMELH) as part of the project *Mainstreaming Global Crop Conservation Strategies in Plant*

*Treaty Processes* led by the Crop Trust. The Crop Trust cooperated with the Secretariat of the International Treaty on Plant Genetic Resources for Food and Agriculture in the development of this document.



## References

Baraniak J and Kania-Dobrowolska M (2022) The Dual Nature of Amaranth—Functional Food and Potential Medicine. *Foods* 11(4): 618. <https://doi.org/10.3390/foods11040618>

Brenner DM, Baltensperger DD, Kulakow PA, Lehmann JW, Myers RL, Slabbert MM, et al. (2000) Genetic Resources and Breeding of *Amaranthus*. In: Janick J, editor. *Plant Breeding Reviews*. 1st ed. Wiley; pp. 227–285. <https://doi.org/10.1002/9780470650172.ch7>

Gonçalves-Dias J and Stetter MG (2021) PopAmaranth: a population genetic genome browser for grain amaranths and their wild relatives. *G3 Genes | Genomes | Genetics* 11(7):jkab103. <https://doi.org/10.1093/g3journal/jkab103>

FAO (2009) *The International Treaty on Plant Genetic Resources for Food and Agriculture*. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. <https://openknowledge.fao.org/server/api/core/bitstreams/a9d0de2a-8e98-4f75-98a8-673078841030/content>

FAO (2025a) FAOSTAT. <https://www.fao.org/faostat/en/#data> (accessed September 2025)

FAO (2025b) *The Third Report on The State of the World's Plant Genetic Resources for Food and Agriculture*. FAO: Rome. <https://doi.org/10.4060/cd4711en>

Khoury CK, Sotelo S, Amariles D, and Hawtin G (2023) *The Plants That Feed the World: baseline data and metrics to inform strategies for the conservation and use of plant genetic resources for food and agriculture*. International Treaty on Plant Genetic Resources for Food and Agriculture Rome: Food and Agricultural Organization of the United Nations. doi: 10.4060/cc6876en. <https://www.fao.org/documents/card/en/c/cc6876en>

Khoury CK, Sotelo S, Hawtin G, Halewood M, Lopez Noriega I, and Lusty C (2025) Germplasm exchange: Thematic Study for *The Third Report on the State of the World's Plant Genetic Resources for Food and Agriculture*. Rome: Food and Agricultural Organization of the United Nations. doi: 10.4060/cd4850en. <https://doi.org/10.4060/cd4850en>

Pandey CD, Kak A, Pandey S, and Gupta V (2015) Trait-specific Amaranth Germplasm—Potentialities to Combat Climate Change. *Ind Jour Plant Gene Resour.* 28(3): 321. <https://doi.org/10.5958/0976-1926.2015.00043.1>

Priyadarsini S, Acharya GC, Tripathy P, Mishra N, Singh S, Choudhari P, et al. (2025) Insights into genomic resources and molecular breeding strategies of Amaranth (*Amaranthus* spp.): a new millennium crop with versatile potential. *South African Journal of Botany* 184: 1085–1100. <https://doi.org/10.1016/j.sajb.2025.07.015>

Sarker U, Hossain MdM, and Oba S (2020) Nutritional and antioxidant components and antioxidant capacity in green morph *Amaranthus* leafy vegetable. *Scientific Reports* 10(1): 1336. <https://doi.org/10.1038/s41598-020-57687-3>

Sauer JD (1967) The Grain Amaranths and Their Relatives: A Revised Taxonomic and Geographic Survey. *Annals of the Missouri Botanical Garden* 54(2): 103–137.

Schafleitner R, Lin Y-p, Dinssa FF, N'Danikou S, Finkers R, Minja R, et al. (2022) The World Vegetable Center *Amaranthus* germplasm collection: Core collection development and evaluation of agronomic and nutritional traits. *Crop Science* 62(3): 1173–1187. <https://doi.org/10.1002/csc2.20715>

Singh A, Mahato AK, Maurya A, Rajkumar S, Singh AK, Bhardwaj R, et al. (2023) Amaranth Genomic Resource Database: an integrated database resource of Amaranth genes and genomics. *Front Plant Sci.* 14: 1203855. <https://doi.org/10.3389/fpls.2023.1203855>

Stoilova T, Van Zonneveld M, Roothaert R, and Schreinemachers P (2019) Connecting genebanks to farmers in East Africa through the distribution of vegetable seed kits. *Plant Genet Resour.* 17(03): 306–309. <https://doi.org/10.1017/S1479262119000017>

USDA (2025a) Amaranth Descriptor. <https://npgsweb.ars-grin.gov/gringlobal/cropdetail?type=descriptor&id=159> (accessed October 2025)

USDA (2025b) Global Global Taxonomy. <https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomy-search> (accessed September 2025)

Van Hintum T, Menting F, and Van Strien E (2011) Quality indicators for passport data in *ex situ* genebanks. *Plant Genetic Resources* 9(3): 478–485. <https://doi.org/10.1017/S1479262111000682>

World Flora Online (WFO) (2025) *Amaranthus* L. <https://www.worldfloraonline.org/taxon/wfo-4000001466> (accessed October 2025)

World Vegetable Center (WorldVeg) (2015) World Vegetable Center Genebank morphological descriptors. <https://worldveg.tind.io/record/75880/?v=pdf> (accessed November 2025)

## Supplementary information

**Supplementary Table 1:** Full list of *ex situ* collections of amaranth genetic resources, in descending order by total number of accessions. Number of accessions and storage condition information from Genesys and FAO WIEWS (2025), with supplementary information as noted. Multilateral System (MLS) status from Plant Treaty GLIS (2025) and from Genesys and FAO WIEWS (2025).

| Institution Code | Institution name                                                                                          | Number of accessions | Percent of total | Cumulative percent | Number of accessions in long term storage (-18-20°C) | Number of accessions included in MLS (from Plant Treaty GLIS) | Number of accessions included in MLS (from genebank collections databases) |
|------------------|-----------------------------------------------------------------------------------------------------------|----------------------|------------------|--------------------|------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|
| IND001           | National Bureau of Plant Genetic Resources                                                                | 6,277                | 24.3%            | 24.3%              | 6,277                                                | 0                                                             | 0                                                                          |
| USA020           | North Central Regional Plant Introduction Station, USDA-ARS, NCRPIS                                       | 3,341                | 12.9%            | 37.2%              | 3,156                                                | 0                                                             | 0                                                                          |
| BRA003           | Embrapa Recursos Genéticos e Biotecnologia                                                                | 2,496                | 9.7%             | 46.9%              | Not listed                                           | 0                                                             | 0                                                                          |
| TWN001           | World Vegetable Center                                                                                    | 1,432                | 5.5%             | 52.4%              | 1,325                                                | 536                                                           | 1,083                                                                      |
| BEN097           | Unité de Génétique, Biotechnologie et Science des Semences                                                | 1,220                | 4.7%             | 57.1%              | Not listed                                           | 1,220                                                         | 0                                                                          |
| MEX208           | INIFAP, Centro Nacional de Recursos Genéticos (CNRG)                                                      | 893                  | 3.5%             | 60.6%              | 893                                                  | 0                                                             | 0                                                                          |
| BGD003           | Bangladesh Agricultural Research Institute                                                                | 794                  | 3.1%             | 63.7%              | 779                                                  | 0                                                             | 50                                                                         |
| HUN003           | Centre for Plant Diversity                                                                                | 787                  | 3.0%             | 66.7%              | 21                                                   | 0                                                             | 5                                                                          |
| PER012           | Estación Experimental Agraria Baños del Inca                                                              | 685                  | 2.6%             | 69.4%              | Not listed                                           | 0                                                             | 0                                                                          |
| JPN183           | NARO Genebank                                                                                             | 680                  | 2.6%             | 72.0%              | 261                                                  | 0                                                             | 0                                                                          |
| ECU023           | Departamento Nacional de Recursos Fitogenéticos                                                           | 589                  | 2.3%             | 74.3%              | 523                                                  | 0                                                             | 0                                                                          |
| MEX194           | Instituto de Investigación y Capacitación Agropecuaria, Acuícola y Forestal del Estado de México (ICAMEX) | 430                  | 1.7%             | 76.0%              | Not listed                                           | 0                                                             | 0                                                                          |
| ARE003           | International Center for Biosaline Agriculture                                                            | 415                  | 1.6%             | 77.6%              | Not listed                                           | 416                                                           | 415                                                                        |
| MEX006           | UACH, Banco Nacional de Germoplasma Vegetal (BANGEV)                                                      | 412                  | 1.6%             | 79.2%              | 191                                                  | 0                                                             | 0                                                                          |
| CRI001           | Centro Agronómico Tropical de Investigación y Enseñanza                                                   | 265                  | 1.0%             | 80.2%              | 265                                                  | 265                                                           | 265                                                                        |
| ZMB048           | National Plant Genetic Resources Centre                                                                   | 260                  | 1.0%             | 81.2%              | 260                                                  | 7                                                             | 0                                                                          |
| VNM049           | Plant Resources Center                                                                                    | 258                  | 1.0%             | 82.2%              | Not listed                                           | 0                                                             | 0                                                                          |
| GBR004           | Millennium Seed Bank - Royal Botanic Gardens Kew                                                          | 243                  | 0.9%             | 83.1%              | Not listed                                           | 0                                                             | 0                                                                          |
| NPL069           | National Agriculture Genetic Resources Centre-Genebank                                                    | 218                  | 0.8%             | 84.0%              | 218                                                  | 0                                                             | 0                                                                          |
| BOL317           | Estación Experimental de Toralapa                                                                         | 216                  | 0.8%             | 84.8%              | Not listed                                           | 0                                                             | 0                                                                          |
| KEN212           | Genetic Resources Research Institute                                                                      | 209                  | 0.8%             | 85.6%              | 1                                                    | 0                                                             | 0                                                                          |

| NGA010 | National Centre for Genetic Resources and Biotechnology                                     | 209 | 0.8% | 86.4% | 209        | 209 | 209 |
|--------|---------------------------------------------------------------------------------------------|-----|------|-------|------------|-----|-----|
| AUS165 | Australian Grains Genebank, Agriculture Victoria                                            | 184 | 0.7% | 87.1% | 184        | 172 | 172 |
| GHA091 | Plant Genetic Resources Research Institute                                                  | 180 | 0.7% | 87.8% | Not listed | 10  | 10  |
| MDG048 | Laboratoire des semences et ressources phytogénétiques, FOFIFA                              | 176 | 0.7% | 88.5% | Not listed | 0   | 0   |
| DEU146 | Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research                       | 159 | 0.6% | 89.1% | 159        | 0   | 0   |
| USA974 | Seed Savers Exchange                                                                        | 145 | 0.6% | 89.7% |            | 0   | 0   |
| MEX201 | UACH, Centro Regional Universitario Sur (CRUS)                                              | 142 | 0.6% | 90.2% | Not listed | 0   | 0   |
| RUS001 | N.I. Vavilov All-Russian Research Institute of Plant Industry                               | 142 | 0.6% | 90.8% | Not listed | 0   | 0   |
| UGA132 | Plant Genetic Resource Centre                                                               | 130 | 0.5% | 91.3% | 130        | 0   | 0   |
| UGA528 | Uganda National Genebank                                                                    | 130 | 0.5% | 91.8% |            | 0   | 0   |
| UKR008 | Ustymivka Experimental Station of Plant Production                                          | 126 | 0.5% | 92.3% | 106        | 0   | 0   |
| MEX131 | UDG, Centro Universitario de Ciencias Biológicas y Agropecuarias (UDG-CUCBA)                | 121 | 0.5% | 92.7% | Not listed | 0   | 0   |
| ZMB030 | SADC Plant Genetic Resources Centre                                                         | 120 | 0.5% | 93.2% | 120        | 0   | 0   |
| CZE122 | Gene bank                                                                                   | 112 | 0.4% | 93.6% | 103        | 1   | 112 |
| MEX263 | SNICS, Depositario Nacional de Referencia de Semillas (DNRS)                                | 112 | 0.4% | 94.1% | Not listed | 0   | 0   |
| ROM007 | Suceava Genebank                                                                            | 107 | 0.4% | 94.5% | 2          | 86  | 86  |
| CMR205 | Ecogerm Farmers                                                                             | 104 | 0.4% | 94.9% |            | 0   | 0   |
| TZA016 | National Plant Genetic Resources Centre                                                     | 93  | 0.4% | 95.3% | 93         | 0   | 0   |
| BGD206 | Lal Teer Seed Limited                                                                       | 84  | 0.3% | 95.6% | 84         | 0   | 0   |
| ZAF062 | RSA National Plant Genetic Resources Centre                                                 | 80  | 0.3% | 95.9% | 79         | 0   | 0   |
| ISR002 | Israel Gene Bank for Agricultural Crops, Agricultural Research Organisation, Volcani Center | 77  | 0.3% | 96.2% | 67         | 0   | 0   |
| MNG030 | Institute of Plant and Agricultural Science                                                 | 74  | 0.3% | 96.5% |            | 0   | 5   |
| PAK001 | Plant Genetic Resources Program                                                             | 69  | 0.3% | 96.7% | 34         | 0   | 67  |
| SVK001 | National Agricultural and Food Centre (NPPC), Research Institute of Plant Production (RIPP) | 69  | 0.3% | 97.0% | Not listed | 0   | 0   |
| ERI003 | National Agricultural Research Institute                                                    | 51  | 0.2% | 97.2% | 51         | 0   | 0   |
| ETH085 | Ethiopian Biodiversity Institute                                                            | 51  | 0.2% | 97.4% | 51         | 0   | 0   |

| ETH013  | International Livestock Research Institute                                                                   | 50 | 0.2% | 97.6% | Not listed | 50 | 50 |  |
|---------|--------------------------------------------------------------------------------------------------------------|----|------|-------|------------|----|----|--|
| CHL028  | Banco Base de Semillas INIA Intihuasi                                                                        | 43 | 0.2% | 97.8% | 43         | 0  | 0  |  |
| LKA036  | Plant Genetic Resources Centre                                                                               | 43 | 0.2% | 97.9% |            | 0  | 0  |  |
| AUS167  | Australian Pastures Genebank                                                                                 | 40 | 0.1% | 98.1% | 40         | 40 | 40 |  |
| UZB006  | Uzbek Research Institute of Plant Industry                                                                   | 39 | 0.1% | 98.2% | Not listed | 0  | 0  |  |
| USA022  | Western Regional Plant Introduction Station, USDA-ARS, Washington State University                           | 38 | 0.1% | 98.4% | Not listed | 0  | 0  |  |
| ZWE049  | Genetic Resources and Biotechnology Institute-Department of Research and Specialist Services                 | 29 | 0.1% | 98.5% | Not listed | 11 | 0  |  |
| UKR021  | Institute of Vegetable and Melon Growing                                                                     | 26 | 0.1% | 98.6% | 23         | 0  | 0  |  |
| PNG004  | Southern Regional Centre Laloki (NARI)                                                                       | 25 | 0.1% | 98.7% | Not listed | 0  | 0  |  |
| MWI041  | Malawi Plant Genetic Resources Centre                                                                        | 20 | 0.1% | 98.8% | 20         | 0  | 20 |  |
| SWZ015  | National Plant Genetic Resources Centre                                                                      | 18 | 0.1% | 98.8% | 18         | 0  | 0  |  |
| BLR014  | State research institution 'Institute of Experimental Botany of the National Academy of Sciences of Belarus' | 17 | 0.1% | 98.9% | 17         | 0  | 0  |  |
| URY003  | INIA La Estanzuela                                                                                           | 14 | 0.0% | 99.0% | 14         | 0  | 0  |  |
| MEX367  | Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro                                            | 13 | 0.0% | 99.0% | Not listed | 0  | 0  |  |
| NGA026  | Obafemi Awolowo University                                                                                   | 13 | 0.0% | 99.1% | Not listed | 0  | 0  |  |
| NZL001  | Margot Forde Genebank, AgResearch Ltd                                                                        | 13 | 0.0% | 99.1% | Not listed | 0  | 0  |  |
| AZE015  | Genetic Resources Institute                                                                                  | 12 | 0.0% | 99.2% | 1          | 0  | 0  |  |
| BGD215  | Advanced Seed Research & Biotech Centre                                                                      | 12 | 0.0% | 99.2% | Not listed | 0  | 0  |  |
| BGR001  | Institute for Plant Genetic Resources 'K.Malkov'                                                             | 12 | 0.0% | 99.2% | 2          | 0  | 0  |  |
| CAN004  | Plant Gene Resources of Canada, Saskatoon Research and Development Centre                                    | 12 | 0.0% | 99.3% | 12         | 0  | 12 |  |
| ARG1350 | Banco Activo de Germoplasma de La Consulta                                                                   | 11 | 0.0% | 99.3% | Not listed | 0  | 0  |  |
| UKR001  | Institute of Plant Production n.a. V.Y. Yurjev of UAAS                                                       | 11 | 0.0% | 99.4% | 10         | 0  | 0  |  |
| UKR036  | Nikitsky Botanical Gardens                                                                                   | 11 | 0.0% | 99.4% | 4          | 0  | 0  |  |
| AUT001  | Austrian Agency for Health and Food Safety                                                                   | 8  | 0.0% | 99.5% | 6          | 0  | 0  |  |
| ALB026  | Plant Genetic Resources Center                                                                               | 7  | 0.0% | 99.5% | 7          | 0  | 0  |  |

|        |                                                                                |   |      |       |            |   |   |
|--------|--------------------------------------------------------------------------------|---|------|-------|------------|---|---|
| BGD099 | Bangladesh Rural Advancement Committee (BRAC)                                  | 7 | 0.0% | 99.5% | Not listed | 0 | 0 |
| SLV050 | CENTA - Banco de Germoplasma                                                   | 7 | 0.0% | 99.5% | 6          | 0 | 0 |
| COL017 | Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA                | 6 | 0.0% | 99.6% | 6          | 0 | 0 |
| GBR017 | Henry Doubleday Research Association                                           | 6 | 0.0% | 99.6% |            | 0 | 0 |
| TUN029 | Banque Nationale de Gènes de Tunisie                                           | 6 | 0.0% | 99.6% | 6          | 0 | 0 |
| BLR026 | The Polessye Institute of Plant Growing                                        | 5 | 0.0% | 99.6% | Not listed | 0 | 0 |
| DEU101 | Federal Plant Variety Office (Bundessortenamt)                                 | 5 | 0.0% | 99.6% | 5          | 0 | 0 |
| JOR105 | National Agricultural Research Center                                          | 5 | 0.0% | 99.7% |            | 0 | 0 |
| LBN020 | Lebanese Agricultural Research Institute                                       | 5 | 0.0% | 99.7% | 5          | 0 | 0 |
| MEX166 | Secretaría del Medio Ambiente e Historia Natural (SEMAHN), Gobierno de Chiapas | 5 | 0.0% | 99.7% | Not listed | 0 | 0 |
| BGD028 | Bangladesh Institute of Nuclear Agriculture (BINA)                             | 4 | 0.0% | 99.7% | Not listed | 0 | 0 |
| BWA015 | National Plant Genetic Resources Centre                                        | 4 | 0.0% | 99.7% | 4          | 0 | 0 |
| DEU022 | Botanical Garden Berlin-Dahlem                                                 | 4 | 0.0% | 99.7% | Not listed | 0 | 0 |
| FRA098 | Station de la Réunion, CIRAD-FLHOR                                             | 4 | 0.0% | 99.8% | 4          | 0 | 0 |
| GBR006 | Warwick Genetic Resources Unit                                                 | 4 | 0.0% | 99.8% | Not listed | 0 | 0 |
| MEX069 | UAAAAN, Centro de Conservación de Semillas Ortodoxas, Región Norte (CC-SO)     | 4 | 0.0% | 99.8% | Not listed | 0 | 0 |
| NAM006 | National Plant Genetic Resources Centre                                        | 4 | 0.0% | 99.8% | 1          | 0 | 0 |
| ESP004 | Centro Nacional de Recursos Fitogenéticos                                      | 3 | 0.0% | 99.8% | 1          | 0 | 0 |
| GRC102 | Hellenic Mediterranean University                                              | 3 | 0.0% | 99.8% | Not listed | 0 | 0 |
| LTU001 | Lithuanian Institute of Agriculture                                            | 3 | 0.0% | 99.8% | Not listed | 0 | 3 |
| POL003 | Plant Breeding and Acclimatization Institute                                   | 3 | 0.0% | 99.9% | 3          | 0 | 0 |
| UKR020 | Institute of Forages                                                           | 3 | 0.0% | 99.9% | 3          | 0 | 0 |
| AUT025 | Referat Pflanzengesundheit und Spezialkulturen                                 | 2 | 0.0% | 99.9% | 2          | 0 | 0 |
| BDI003 | Institut des Sciences Agronomiques du Burundi                                  | 2 | 0.0% | 99.9% | Not listed | 0 | 0 |
| BGD014 | Bangladesh Forest Research Institute (BFRI)                                    | 2 | 0.0% | 99.9% | Not listed | 0 | 0 |
| BRA012 | Embrapa Hortalícias                                                            | 2 | 0.0% | 99.9% | Not listed | 0 | 0 |
| CHL071 | Banco de Germoplasma de Papa, Universidad Austral de Chile                     | 2 | 0.0% | 99.9% | 2          | 0 | 0 |

|        |                                                                                                                                        |   |      |        |            |   |   |
|--------|----------------------------------------------------------------------------------------------------------------------------------------|---|------|--------|------------|---|---|
| ESP027 | Gobierno de Aragón.<br>Centro de Investigación<br>y Tecnología<br>Agroalimentaria. Banco<br>de Germoplasma de<br>Hortícolas            | 2 | 0.0% | 99.9%  | 1          | 0 | 0 |
| HRV041 | Faculty of Agriculture,<br>University of Zagreb                                                                                        | 2 | 0.0% | 99.9%  | Not listed | 0 | 0 |
| UKR019 | Research Station of<br>Medicinal Crops                                                                                                 | 2 | 0.0% | 99.9%  | 1          | 0 | 0 |
| UKR075 | Kolomyia Experimental<br>Station                                                                                                       | 2 | 0.0% | 99.9%  | Not listed | 0 | 0 |
| USA151 | National Arboretum-<br>Germplasm Unit, USDA/<br>ARS                                                                                    | 2 | 0.0% | 99.9%  | Not listed | 0 | 0 |
| AZE003 | Research Institute of Crop<br>Husbandry                                                                                                | 1 | 0.0% | 99.9%  | Not listed | 0 | 0 |
| AZE004 | Institute of Botany                                                                                                                    | 1 | 0.0% | 100.0% | Not listed | 0 | 0 |
| AZE006 | Research Institute of<br>Forage, Meadows and<br>Pastures                                                                               | 1 | 0.0% | 100.0% | Not listed | 0 | 0 |
| BFA084 | Commission nationale de<br>gestion des ressources<br>phytogenétiques                                                                   | 1 | 0.0% | 100.0% | Not listed | 0 | 0 |
| CYP004 | National (CYPARI)<br>Genebank, Agricultural<br>Research Institute,<br>Ministry of Agriculture,<br>Rural Development and<br>Environment | 1 | 0.0% | 100.0% | 1          | 0 | 0 |
| ECU330 | Estación Experimental<br>Tropical Pichilingue                                                                                          | 1 | 0.0% | 100.0% | Not listed | 0 | 0 |
| EGY087 | National Gene Bank                                                                                                                     | 1 | 0.0% | 100.0% | Not listed | 0 | 0 |
| ESP172 | Cabildo Insular de Tenerife.<br>Centro de Conservación de<br>la Biodiversidad Agrícola<br>de Tenerife                                  | 1 | 0.0% | 100.0% | Not listed | 0 | 0 |
| GUY021 | National Agricultural<br>Research and Extension<br>Institute                                                                           | 1 | 0.0% | 100.0% | Not listed | 0 | 0 |
| LBY006 | National Bank for Plant<br>Genetic Resources                                                                                           | 1 | 0.0% | 100.0% | Not listed | 0 | 0 |
| PHL008 | Bureau of Plant Industry,<br>Department of Agriculture                                                                                 | 1 | 0.0% | 100.0% | Not listed | 0 | 0 |
| QAT004 | Biotechnology Center,<br>Ministry of Environment                                                                                       | 1 | 0.0% | 100.0% | 1          | 1 | 1 |
| TJK027 | National Center for Genetic<br>Resources                                                                                               | 1 | 0.0% | 100.0% | 1          | 0 | 0 |
| UKR017 | Institute of Agriculture of<br>the Woodlands                                                                                           | 1 | 0.0% | 100.0% | 1          | 0 | 0 |

**Supplementary Table 2:** Full list of taxonomic names in *ex situ* genetic resource collections, in descending order by number of accessions conserved. Germplasm data from Genesys and FAO WIEWS (2025).

| Taxon                                                                              | Number of accessions (from genebank collections databases) |
|------------------------------------------------------------------------------------|------------------------------------------------------------|
| <i>Amaranthus hypochondriacus</i> L.                                               | 9,157                                                      |
| <i>Amaranthus</i> L.                                                               | 5,462                                                      |
| <i>Amaranthus cruentus</i> L.                                                      | 3,773                                                      |
| <i>Amaranthus caudatus</i> L.                                                      | 2,899                                                      |
| <i>Amaranthus tricolor</i> L.                                                      | 1,225                                                      |
| <i>Amaranthus hybridus</i> L.                                                      | 837                                                        |
| <i>Amaranthus dubius</i> Mart. ex Thell.                                           | 425                                                        |
| <i>Amaranthus viridis</i> L.                                                       | 378                                                        |
| <i>Amaranthus</i> hybr.                                                            | 340                                                        |
| <i>Amaranthus spinosus</i> L.                                                      | 265                                                        |
| <i>Amaranthus blitum</i> L.                                                        | 248                                                        |
| <i>Amaranthus retroflexus</i> L.                                                   | 204                                                        |
| <i>Amaranthus hybridus</i> subsp. <i>quitensis</i> (Kunth) Costea & Carretero      | 124                                                        |
| <i>Amaranthus graecizans</i> L.                                                    | 116                                                        |
| <i>Amaranthus palmeri</i> S. Watson                                                | 114                                                        |
| <i>Amaranthus albus</i> L.                                                         | 70                                                         |
| <i>Amaranthus blitum</i> subsp. <i>oleraceus</i> (L.) Costea                       | 62                                                         |
| <i>Amaranthus tuberculatus</i> (Moq.) J. D. Sauer                                  | 61                                                         |
| <i>Amaranthus blitoides</i> S. Watson                                              | 56                                                         |
| <i>Amaranthus fimbriatus</i> (Torr.) Benth. ex S. Watson                           | 53                                                         |
| <i>Amaranthus powellii</i> S. Watson                                               | 43                                                         |
| <i>Amaranthus thunbergii</i> Moq.                                                  | 20                                                         |
| <i>Amaranthus deflexus</i> L.                                                      | 19                                                         |
| <i>Amaranthus powellii</i> subsp. <i>bouchonii</i> (Thell.) Costea & Carretero     | 15                                                         |
| <i>Amaranthus watsonii</i> Standl.                                                 | 15                                                         |
| <i>Amaranthus tortuosus</i> Hornem.                                                | 12                                                         |
| <i>Amaranthus graecizans</i> subsp. <i>silvestris</i> (Tourn. ex Vill.) Brenan     | 9                                                          |
| <i>Amaranthus pumilus</i> Raf.                                                     | 8                                                          |
| <i>Amaranthus crispus</i> (Lesp. & Thévenau) A. Braun ex J. M. Coulter & S. Watson | 7                                                          |
| <i>Amaranthus polygonoides</i> L.                                                  | 7                                                          |
| <i>Amaranthus arenicola</i> I. M. Johnst.                                          | 6                                                          |
| <i>Amaranthus muricatus</i> (Moq.) Hieron.                                         | 6                                                          |
| <i>Amaranthus edulis</i> Michx. ex Moq.                                            | 5                                                          |
| <i>Amaranthus cannabinus</i> (L.) Sauer                                            | 4                                                          |
| <i>Amaranthus greggii</i> S. Watson                                                | 4                                                          |
| <i>Amaranthus wrightii</i> S. Watson                                               | 4                                                          |
| <i>Amaranthus australis</i> (A. Gray) Sauer                                        | 3                                                          |

|                                                                                                                   |   |
|-------------------------------------------------------------------------------------------------------------------|---|
| <i>Amaranthus blitum</i> subsp. <i>emarginatus</i> (Salzm. ex Uline & W. L. Bray) Carretero, Muñoz Garm. & Pedrol | 3 |
| <i>Amaranthus blitum</i> var. <i>pseudogracilis</i> (Thell.) Lambinon                                             | 3 |
| <i>Amaranthus crassipes</i> Schltdl.                                                                              | 3 |
| <i>Amaranthus interruptus</i> R. Br.                                                                              | 3 |
| <i>Amaranthus praetermissus</i> Brenan                                                                            | 3 |
| <i>Amaranthus standleyanus</i> Parodi ex Covas                                                                    | 3 |
| <i>Amaranthus acanthochiton</i> Sauer                                                                             | 2 |
| <i>Amaranthus californicus</i> (Moq.) S. Watson                                                                   | 2 |
| <i>Amaranthus centralis</i> J. Palmer & Mowatt                                                                    | 2 |
| <i>Amaranthus dinteri</i> Schinz                                                                                  | 2 |
| <i>Amaranthus floridanus</i> (S. Watson) Sauer                                                                    | 2 |
| <i>Amaranthus hybridus</i> subsp. <i>hybridus</i> x <i>hypochondriacus</i> L.                                     | 2 |
| <i>Amaranthus sparganicephalus</i> Thell.                                                                         | 2 |
| <i>Amaranthus atropurpureus</i> Roxb.                                                                             | 1 |
| <i>Amaranthus brownii</i> Christoph. & Caum                                                                       | 1 |
| <i>Amaranthus cochleitepalus</i> Domin                                                                            | 1 |
| <i>Amaranthus cuspidifolius</i> Domin                                                                             | 1 |
| <i>Amaranthus grandiflorus</i> (J. M. Black) J. M. Black                                                          | 1 |
| <i>Amaranthus hybridus</i> x <i>cruentus</i>                                                                      | 1 |
| <i>Amaranthus hypochondriacus</i> x <i>retroflexus</i> L.                                                         | 1 |
| <i>Amaranthus macrocarpus</i> Benth.                                                                              | 1 |
| <i>Amaranthus polygamus</i> L.                                                                                    | 1 |
| <i>Amaranthus rubra</i> K. Krause                                                                                 | 1 |
| <i>Amaranthus tamaulipensis</i> Henrickson                                                                        | 1 |
| <i>Amaranthus tenuifolius</i> Willd.                                                                              | 1 |
| <i>Amaranthus tucsonensis</i> Henrickson                                                                          | 1 |
| <i>Amaranthus</i> x <i>ozanonii</i> Thell.                                                                        | 1 |
| <i>Amaranthus</i> x <i>ozanonii</i> Priszter                                                                      | 1 |

**THE GLOBAL CROP DIVERSITY TRUST**  
Platz der Vereinten Nationen 7  
53113 Bonn  
Germany

**PUBLICATIONS CONTACT**  
[publications@croptrust.org](mailto:publications@croptrust.org)

**GENERAL CONTACT**  
[info@croptrust.org](mailto:info@croptrust.org)

